↓ Skip to main content

Molecular species identification, host preference and detection of myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK

Overview of attention for article published in Parasites & Vectors, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
3 X users

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
87 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Molecular species identification, host preference and detection of myxoma virus in the Anopheles maculipennis complex (Diptera: Culicidae) in southern England, UK
Published in
Parasites & Vectors, August 2015
DOI 10.1186/s13071-015-1034-8
Pubmed ID
Authors

Victor A. Brugman, Luis M. Hernández-Triana, Sean W. J. Prosser, Chris Weland, David G. Westcott, Anthony R. Fooks, Nicholas Johnson

Abstract

Determining the host feeding patterns of mosquitoes by identifying the origin of their blood-meals is an important part of understanding the role of vector species in current and future disease transmission cycles. Collecting large numbers of blood-fed mosquitoes from the field is difficult, therefore it is important to maximise the information obtained from each specimen. This study aimed to use mosquito genome sequence to identify the species within Anopheles maculipennis sensu lato (An. maculipennis s.l.), identify the vertebrate hosts of field-caught blood-fed An. maculipennis s.l. , and to test for the presence of myxoma virus (Poxviridae, genus Leporipoxvirus) in specimens found to have fed on the European rabbit (Oryctolagus cuniculus). Blood-fed An. maculipennis s.l. were collected from resting sites at Elmley Nature Reserve, Kent, between June and September 2013. Hosts that An. maculipennis s.l. had fed on were determined by a PCR-sequencing approach based on the partial amplification of the mitochondrial cytochrome C oxidase subunit I gene. Mosquitoes were then identified to species by sequencing a region of the internal transcribed spacer-2. DNA extracts from all mosquitoes identified as having fed on rabbits were subsequently screened using PCR for the presence of myxoma virus. A total of 94 blood-fed Anopheles maculipennis s.l. were collected, of which 43 (46 %) provided positive blood-meal identification results. Thirty-six of these specimens were identified as Anopheles atroparvus, which had fed on rabbit (n = 33, 92 %) and cattle (n = 3, 8 %). Seven mosquitoes were identified as Anopheles messeae, which had fed on cattle (n = 6, 86 %) and dog (n = 1, 14 %). Of the 33 An. atroparvus that contained rabbit blood, nine (27 %) were positive for myxoma virus. Results demonstrate that a single DNA extract from a blood-fed mosquito can be successfully used for molecular identification of members of the An. maculipennis complex, blood-meal identification, and for the targeted detection of a myxoma virus. This study shows that An. atroparvus has a strong feeding preference for both healthy and myxoma-infected rabbits, providing evidence that this species may play a significant role in the transmission of myxomatosis among wild rabbit populations in the United Kingdom (UK).

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 87 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
Unknown 86 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 20%
Researcher 13 15%
Student > Master 11 13%
Student > Bachelor 10 11%
Student > Postgraduate 5 6%
Other 15 17%
Unknown 16 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 30 34%
Biochemistry, Genetics and Molecular Biology 11 13%
Veterinary Science and Veterinary Medicine 10 11%
Medicine and Dentistry 4 5%
Environmental Science 4 5%
Other 10 11%
Unknown 18 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2015.
All research outputs
#13,953,851
of 22,824,164 outputs
Outputs from Parasites & Vectors
#2,651
of 5,463 outputs
Outputs of similar age
#131,148
of 263,348 outputs
Outputs of similar age from Parasites & Vectors
#53
of 120 outputs
Altmetric has tracked 22,824,164 research outputs across all sources so far. This one is in the 37th percentile – i.e., 37% of other outputs scored the same or lower than it.
So far Altmetric has tracked 5,463 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.7. This one is in the 48th percentile – i.e., 48% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 263,348 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 120 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.