↓ Skip to main content

Biological characterization of compounds from Rhinella schneideri poison that act on the complement system

Overview of attention for article published in Journal of Venomous Animals and Toxins including Tropical Diseases, August 2015
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users
facebook
2 Facebook pages

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
32 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Biological characterization of compounds from Rhinella schneideri poison that act on the complement system
Published in
Journal of Venomous Animals and Toxins including Tropical Diseases, August 2015
DOI 10.1186/s40409-015-0024-9
Pubmed ID
Authors

Fernando A. P. Anjolette, Flávia P. Leite, Karla C. F. Bordon, Ana Elisa C. S. Azzolini, Juliana C. Pereira, Luciana S. Pereira-Crott, Eliane C. Arantes

Abstract

The skin secretions of toads of the family Bufonidae contain biogenic amines, alkaloids, steroids (bufotoxins), bufodienolides (bufogenin), peptides and proteins. The poison of Rhinella schneideri, formerly classified as Bufo paracnemis, presents components that act on different biological systems, including the complement system. The aim of this study was to isolate and examine the activity of Rhinella schneideri poison (RsP) components on the complement system. The components active on the complement system were purified in three chromatographic steps, using a combination of cation-exchange, anion-exchange and gel filtration chromatography. The resulting fractions were analyzed by SDS-PAGE and screened for their activity in the hemolytic assay of the classical/lectin complement pathways. Fractions active on the complement system were also assessed for their ability to generate C3 fragments evaluated by two dimensional immunoelectrophoresis assay, C3a and C5a by neutrophil chemotaxis assay and SC5b-9 complex by ELISA assay. The fractionation protocol was able to isolate the component S5 from the RsP, as demonstrated by SDS-PAGE and the RP-FPLC profile. S5 is a protein of about 6000 Da, while S2 presents components of higher molecular mass (40,000 to 50,000 Da). Fractions S2 and S5 attenuated the hemolytic activity of the classical/lectin pathways after preincubation with normal human serum. Both components stimulated complement-dependent neutrophil chemotaxis and the production of C3 fragments, as shown by two-dimensional immunoelectrophoresis. S2 showed a higher capacity to generate the SC5b - 9 complex than the other fractions. This action was observed after the exposure of normal human serum to the fractions. This is the first study to examine the activity of RsP components on the complement system. Fractions S2 and S5 reduced the complement hemolytic activity, stimulated complement-dependent neutrophil chemotaxis and stimulated the production of C3 fragments, indicating that they were able to activate the complement cascade. Furthermore, fraction S2 was also able to generate the SC5b-9 complex. These components may be useful tools for studying dysfunction of the complement cascade.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 32 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 32 100%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 10 31%
Student > Master 7 22%
Researcher 4 13%
Professor > Associate Professor 2 6%
Professor 2 6%
Other 3 9%
Unknown 4 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 38%
Medicine and Dentistry 5 16%
Environmental Science 3 9%
Biochemistry, Genetics and Molecular Biology 3 9%
Pharmacology, Toxicology and Pharmaceutical Science 2 6%
Other 2 6%
Unknown 5 16%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 September 2015.
All research outputs
#15,169,543
of 25,374,647 outputs
Outputs from Journal of Venomous Animals and Toxins including Tropical Diseases
#246
of 539 outputs
Outputs of similar age
#134,466
of 276,167 outputs
Outputs of similar age from Journal of Venomous Animals and Toxins including Tropical Diseases
#6
of 14 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 38th percentile – i.e., 38% of other outputs scored the same or lower than it.
So far Altmetric has tracked 539 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.6. This one has gotten more attention than average, scoring higher than 51% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 276,167 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 14 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.