↓ Skip to main content

Protein supplementation of human milk for promoting growth in preterm infants

Overview of attention for article published in Cochrane database of systematic reviews, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (87th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
27 tweeters
facebook
2 Facebook pages

Citations

dimensions_citation
3 Dimensions

Readers on

mendeley
127 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Protein supplementation of human milk for promoting growth in preterm infants
Published in
Cochrane database of systematic reviews, June 2018
DOI 10.1002/14651858.cd000433.pub2
Pubmed ID
Authors

Emma A Amissah, Julie Brown, Jane E Harding

Abstract

Preterm infants require high protein intake to achieve adequate growth and development. Although breast milk feeding has many benefits for this population, the protein content is highly variable, and inadequate to support rapid infant growth. This is a 2018 update of a Cochrane Review first published in 1999. To determine whether protein-supplemented human milk compared with unsupplemented human milk, fed to preterm infants, improves growth, body composition, cardio-metabolic, and neurodevelopmental outcomes, without significant adverse effects. We used the standard search strategy of Cochrane Neonatal to search CENTRAL, MEDLINE via PubMed, Embase, and CINAHL (February 2018). We also searched clinical trials databases, conference proceedings and the reference lists of retrieved articles for randomised controlled trials (RCT) and quasi-randomised trials. Published and unpublished RCTs were eligible if they used random or quasi-random methods to allocate hospitalised preterm infants who were being fed human milk, to additional protein supplementation or no supplementation. Two review authors independently abstracted data, assessed risk of bias and the quality of evidence at the outcome level, using GRADE methodology. We performed meta-analyses, using risk ratio (RR) for dichotomous data, and mean difference (MD) for continuous data, with their respective 95% confidence intervals (CIs). We used a fixed-effect model and had planned to explore potential causes of heterogeneity via subgroup or sensitivity analyses. We included six RCTs, involving 204 preterm infants. Low-quality evidence showed that protein supplementation of human milk increased in-hospital rates of growth in weight (MD 3.82 g/kg/day, 95% CI 2.94 to 4.7; five RCTs, 101 infants; I² = 73%), length (MD 0.12 cm/wk, 95% CI 0.07 to 0.17; four RCTs, 68 infants; I² = 89%), and head circumference (MD 0.06 cm/wk, 95% CI 0.01 to 0.12; four RCTs, 68 infants; I² = 84%). There was no evidence of a clear difference in rate of growth of skin fold thickness between the supplemented and unsupplemented groups (triceps MD 0.06 mm/wk, 95% CI -0.09 to 0.21; one RCT, 20 infants; or subscapular MD 0.00 mm/wk, 95% CI -0.17 to 0.17; one RCT, 20 infants). Protein supplementation led to longer hospital stays (MD 18.5 days, 95% CI 4.39 to 32.61; one RCT, 20 infants; very low-quality evidence), and higher blood urea nitrogen concentrations compared to the unsupplemented group (MD 0.95 mmol/L, 95% CI 0.81 to 1.09; four RCTs, 81 infants; I² = 56%). Very low-quality evidence did not show that protein supplementation clearly increased the risk of feeding intolerance (RR 2.70, 95% CI 0.13 to 58.24; one RCT, 17 infants), or necrotizing enterocolitis (RR 1.11, 95% CI 0.07 to 17.12; one RCT, 76 infants), or clearly altered serum albumin concentrations (MD 2.5 g/L, 95% CI -5.66 to 10.66; one RCT, 11 infants), compared with the unsupplemented groups. No data were available about the effects of protein supplementation on long-term growth, body mass index, body composition, neurodevelopmental, or cardio-metabolic outcomes. Low-quality evidence showed that protein supplementation of human milk, fed to preterm infants, increased short-term growth. However, the small sample sizes, low precision, and very low-quality evidence regarding duration of hospital stay, feeding intolerance, and necrotising enterocolitis precluded any conclusions about these outcomes. There were no data on outcomes after hospital discharge. Our findings may not be generalisable to low-resource settings, as none of the included studies were conducted in these settings.Since protein supplementation of human milk is now usually done as a component of multi-nutrient fortifiers, future studies should compare different amounts of protein in multi-component fortifiers, and be designed to determine the effects on duration of hospital stay and safety, as well as on long-term growth, body composition, cardio-metabolic, and neurodevelopmental outcomes.

Twitter Demographics

The data shown below were collected from the profiles of 27 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 127 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 2 2%
Spain 1 <1%
India 1 <1%
China 1 <1%
Unknown 122 96%

Demographic breakdown

Readers by professional status Count As %
Researcher 24 19%
Student > Master 22 17%
Student > Ph. D. Student 15 12%
Other 14 11%
Unspecified 13 10%
Other 39 31%
Readers by discipline Count As %
Medicine and Dentistry 57 45%
Unspecified 23 18%
Nursing and Health Professions 13 10%
Social Sciences 8 6%
Agricultural and Biological Sciences 5 4%
Other 21 17%

Attention Score in Context

This research output has an Altmetric Attention Score of 16. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 December 2018.
All research outputs
#984,664
of 13,588,747 outputs
Outputs from Cochrane database of systematic reviews
#3,005
of 10,646 outputs
Outputs of similar age
#34,232
of 267,719 outputs
Outputs of similar age from Cochrane database of systematic reviews
#77
of 165 outputs
Altmetric has tracked 13,588,747 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,646 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.1. This one has gotten more attention than average, scoring higher than 71% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,719 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 87% of its contemporaries.
We're also able to compare this research output to 165 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.