↓ Skip to main content

Differential preservation of endogenous human and microbial DNA in dental calculus and dentin

Overview of attention for article published in Scientific Reports, June 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

blogs
1 blog
twitter
76 tweeters
facebook
6 Facebook pages

Citations

dimensions_citation
44 Dimensions

Readers on

mendeley
85 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Differential preservation of endogenous human and microbial DNA in dental calculus and dentin
Published in
Scientific Reports, June 2018
DOI 10.1038/s41598-018-28091-9
Pubmed ID
Authors

Allison E. Mann, Susanna Sabin, Kirsten Ziesemer, Åshild J. Vågene, Hannes Schroeder, Andrew T. Ozga, Krithivasan Sankaranarayanan, Courtney A. Hofman, James A. Fellows Yates, Domingo C. Salazar-García, Bruno Frohlich, Mark Aldenderfer, Menno Hoogland, Christopher Read, George R. Milner, Anne C. Stone, Cecil M. Lewis, Johannes Krause, Corinne Hofman, Kirsten I. Bos, Christina Warinner

Abstract

Dental calculus (calcified dental plaque) is prevalent in archaeological skeletal collections and is a rich source of oral microbiome and host-derived ancient biomolecules. Recently, it has been proposed that dental calculus may provide a more robust environment for DNA preservation than other skeletal remains, but this has not been systematically tested. In this study, shotgun-sequenced data from paired dental calculus and dentin samples from 48 globally distributed individuals are compared using a metagenomic approach. Overall, we find DNA from dental calculus is consistently more abundant and less contaminated than DNA from dentin. The majority of DNA in dental calculus is microbial and originates from the oral microbiome; however, a small but consistent proportion of DNA (mean 0.08 ± 0.08%, range 0.007-0.47%) derives from the host genome. Host DNA content within dentin is variable (mean 13.70 ± 18.62%, range 0.003-70.14%), and for a subset of dentin samples (15.21%), oral bacteria contribute > 20% of total DNA. Human DNA in dental calculus is highly fragmented, and is consistently shorter than both microbial DNA in dental calculus and human DNA in paired dentin samples. Finally, we find that microbial DNA fragmentation patterns are associated with guanine-cytosine (GC) content, but not aspects of cellular structure.

Twitter Demographics

The data shown below were collected from the profiles of 76 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 85 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 85 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 21 25%
Student > Master 13 15%
Student > Bachelor 11 13%
Researcher 8 9%
Student > Postgraduate 4 5%
Other 9 11%
Unknown 19 22%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 18 21%
Agricultural and Biological Sciences 16 19%
Medicine and Dentistry 8 9%
Social Sciences 7 8%
Arts and Humanities 5 6%
Other 8 9%
Unknown 23 27%

Attention Score in Context

This research output has an Altmetric Attention Score of 48. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 October 2019.
All research outputs
#537,044
of 17,583,573 outputs
Outputs from Scientific Reports
#6,093
of 94,738 outputs
Outputs of similar age
#15,669
of 284,523 outputs
Outputs of similar age from Scientific Reports
#3
of 54 outputs
Altmetric has tracked 17,583,573 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 94,738 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.7. This one has done particularly well, scoring higher than 93% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,523 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 54 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.