Title |
Differential preservation of endogenous human and microbial DNA in dental calculus and dentin
|
---|---|
Published in |
Scientific Reports, June 2018
|
DOI | 10.1038/s41598-018-28091-9 |
Pubmed ID | |
Authors |
Allison E. Mann, Susanna Sabin, Kirsten Ziesemer, Åshild J. Vågene, Hannes Schroeder, Andrew T. Ozga, Krithivasan Sankaranarayanan, Courtney A. Hofman, James A. Fellows Yates, Domingo C. Salazar-García, Bruno Frohlich, Mark Aldenderfer, Menno Hoogland, Christopher Read, George R. Milner, Anne C. Stone, Cecil M. Lewis, Johannes Krause, Corinne Hofman, Kirsten I. Bos, Christina Warinner |
Abstract |
Dental calculus (calcified dental plaque) is prevalent in archaeological skeletal collections and is a rich source of oral microbiome and host-derived ancient biomolecules. Recently, it has been proposed that dental calculus may provide a more robust environment for DNA preservation than other skeletal remains, but this has not been systematically tested. In this study, shotgun-sequenced data from paired dental calculus and dentin samples from 48 globally distributed individuals are compared using a metagenomic approach. Overall, we find DNA from dental calculus is consistently more abundant and less contaminated than DNA from dentin. The majority of DNA in dental calculus is microbial and originates from the oral microbiome; however, a small but consistent proportion of DNA (mean 0.08 ± 0.08%, range 0.007-0.47%) derives from the host genome. Host DNA content within dentin is variable (mean 13.70 ± 18.62%, range 0.003-70.14%), and for a subset of dentin samples (15.21%), oral bacteria contribute > 20% of total DNA. Human DNA in dental calculus is highly fragmented, and is consistently shorter than both microbial DNA in dental calculus and human DNA in paired dentin samples. Finally, we find that microbial DNA fragmentation patterns are associated with guanine-cytosine (GC) content, but not aspects of cellular structure. |
X Demographics
Geographical breakdown
Country | Count | As % |
---|---|---|
United States | 7 | 14% |
United Kingdom | 5 | 10% |
Canada | 2 | 4% |
Germany | 2 | 4% |
Spain | 2 | 4% |
Hong Kong | 1 | 2% |
Argentina | 1 | 2% |
Thailand | 1 | 2% |
India | 1 | 2% |
Other | 6 | 12% |
Unknown | 22 | 44% |
Demographic breakdown
Type | Count | As % |
---|---|---|
Members of the public | 40 | 80% |
Scientists | 9 | 18% |
Science communicators (journalists, bloggers, editors) | 1 | 2% |
Mendeley readers
Geographical breakdown
Country | Count | As % |
---|---|---|
Unknown | 132 | 100% |
Demographic breakdown
Readers by professional status | Count | As % |
---|---|---|
Student > Ph. D. Student | 25 | 19% |
Student > Bachelor | 16 | 12% |
Researcher | 15 | 11% |
Student > Master | 14 | 11% |
Student > Doctoral Student | 6 | 5% |
Other | 20 | 15% |
Unknown | 36 | 27% |
Readers by discipline | Count | As % |
---|---|---|
Biochemistry, Genetics and Molecular Biology | 28 | 21% |
Agricultural and Biological Sciences | 19 | 14% |
Medicine and Dentistry | 11 | 8% |
Social Sciences | 7 | 5% |
Arts and Humanities | 7 | 5% |
Other | 17 | 13% |
Unknown | 43 | 33% |