↓ Skip to main content

Red blood cell indices and anaemia as causative factors for cognitive function deficits and for Alzheimer’s disease

Overview of attention for article published in Genome Medicine, June 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (88th percentile)

Mentioned by

1 news outlet
14 tweeters
1 Facebook page


11 Dimensions

Readers on

46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Red blood cell indices and anaemia as causative factors for cognitive function deficits and for Alzheimer’s disease
Published in
Genome Medicine, June 2018
DOI 10.1186/s13073-018-0556-z
Pubmed ID

Laura M. Winchester, John Powell, Simon Lovestone, Alejo J. Nevado-Holgado


Studies have shown that low haemoglobin and anaemia are associated with poor cognition, and anaemia is known to be associated with Alzheimer's disease (AD), but the mechanism of this risk is unknown. Here, we first seek to confirm the association between cognition and anaemia and secondly, in order to further understand the mechanism of this association, to estimate the direction of causation using Mendelian randomisation. Two independent cohorts were used in this analysis: AddNeuroMed, a longitudinal study of 738 subjects including AD and age-matched controls with blood cell measures, cognitive assessments and gene expression data from blood; and UK Biobank, a study of 502,649 healthy participants, aged 40-69 years with cognitive test measures and blood cell indices at baseline. General linear models were calculated using cognitive function as the outcome with correction for age, sex and education. In UK Biobank, SNPs with known blood cell measure associations were analysed with Mendelian randomisation to estimate direction of causality. In AddNeuroMed, gene expression data was used in pathway enrichment analysis to identify associations reflecting biological function. Both sample sets evidence a reproducible association between cognitive performance and mean corpuscular haemoglobin (MCH), a measure of average mass of haemoglobin per red blood cell. Furthermore, in the AddNeuroMed cohort, where longitudinal samples were available, we showed a greater decline in red blood cell indices for AD patients when compared to controls (p values between 0.05 and 10-6). In the UK Biobank cohort, we found lower haemoglobin in participants with reduced cognitive function. There was a significant association for MCH and red blood cell distribution width (RDW, a measure of cell volume variability) compared to four cognitive function tests including reaction time and reasoning (p < 0.0001). Using Mendelian randomisation, we then showed a significant effect of MCH on the verbal-numeric and numeric traits, implying that anaemia has causative effect on cognitive performance. Lower haemoglobin levels in blood are associated to poor cognitive function and AD. We have used UK Biobank SNP data to determine the relationship between cognitive testing and haemoglobin measures and suggest that haemoglobin level and therefore anaemia does have a primary causal impact on cognitive performance.

Twitter Demographics

The data shown below were collected from the profiles of 14 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 46 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 9 20%
Student > Ph. D. Student 4 9%
Student > Master 4 9%
Student > Postgraduate 3 7%
Student > Bachelor 3 7%
Other 10 22%
Unknown 13 28%
Readers by discipline Count As %
Medicine and Dentistry 11 24%
Biochemistry, Genetics and Molecular Biology 7 15%
Neuroscience 3 7%
Nursing and Health Professions 3 7%
Psychology 3 7%
Other 6 13%
Unknown 13 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 19. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 22 September 2020.
All research outputs
of 16,074,715 outputs
Outputs from Genome Medicine
of 1,081 outputs
Outputs of similar age
of 278,717 outputs
Outputs of similar age from Genome Medicine
of 1 outputs
Altmetric has tracked 16,074,715 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 92nd percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,081 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 23.7. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 278,717 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 88% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them