↓ Skip to main content

MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics

Overview of attention for article published in Journal of Cheminformatics, August 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (80th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (53rd percentile)

Mentioned by

twitter
12 X users
googleplus
1 Google+ user

Citations

dimensions_citation
189 Dimensions

Readers on

mendeley
271 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
MINEs: open access databases of computationally predicted enzyme promiscuity products for untargeted metabolomics
Published in
Journal of Cheminformatics, August 2015
DOI 10.1186/s13321-015-0087-1
Pubmed ID
Authors

James G Jeffryes, Ricardo L Colastani, Mona Elbadawi-Sidhu, Tobias Kind, Thomas D Niehaus, Linda J Broadbelt, Andrew D Hanson, Oliver Fiehn, Keith E J Tyo, Christopher S Henry

Abstract

In spite of its great promise, metabolomics has proven difficult to execute in an untargeted and generalizable manner. Liquid chromatography-mass spectrometry (LC-MS) has made it possible to gather data on thousands of cellular metabolites. However, matching metabolites to their spectral features continues to be a bottleneck, meaning that much of the collected information remains uninterpreted and that new metabolites are seldom discovered in untargeted studies. These challenges require new approaches that consider compounds beyond those available in curated biochemistry databases. Here we present Metabolic In silico Network Expansions (MINEs), an extension of known metabolite databases to include molecules that have not been observed, but are likely to occur based on known metabolites and common biochemical reactions. We utilize an algorithm called the Biochemical Network Integrated Computational Explorer (BNICE) and expert-curated reaction rules based on the Enzyme Commission classification system to propose the novel chemical structures and reactions that comprise MINE databases. Starting from the Kyoto Encyclopedia of Genes and Genomes (KEGG) COMPOUND database, the MINE contains over 571,000 compounds, of which 93% are not present in the PubChem database. However, these MINE compounds have on average higher structural similarity to natural products than compounds from KEGG or PubChem. MINE databases were able to propose annotations for 98.6% of a set of 667 MassBank spectra, 14% more than KEGG alone and equivalent to PubChem while returning far fewer candidates per spectra than PubChem (46 vs. 1715 median candidates). Application of MINEs to LC-MS accurate mass data enabled the identity of an unknown peak to be confidently predicted. MINE databases are freely accessible for non-commercial use via user-friendly web-tools at http://minedatabase.mcs.anl.gov and developer-friendly APIs. MINEs improve metabolomics peak identification as compared to general chemical databases whose results include irrelevant synthetic compounds. Furthermore, MINEs complement and expand on previous in silico generated compound databases that focus on human metabolism. We are actively developing the database; future versions of this resource will incorporate transformation rules for spontaneous chemical reactions and more advanced filtering and prioritization of candidate structures. Graphical abstractMINE database construction and access methods. The process of constructing a MINE database from the curated source databases is depicted on the left. The methods for accessing the database are shown on the right.

X Demographics

X Demographics

The data shown below were collected from the profiles of 12 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 271 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 3 1%
Brazil 3 1%
Switzerland 1 <1%
Germany 1 <1%
Hungary 1 <1%
South Africa 1 <1%
Sweden 1 <1%
Iceland 1 <1%
United Kingdom 1 <1%
Other 0 0%
Unknown 258 95%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 71 26%
Researcher 53 20%
Student > Master 22 8%
Student > Bachelor 18 7%
Professor 17 6%
Other 42 15%
Unknown 48 18%
Readers by discipline Count As %
Agricultural and Biological Sciences 53 20%
Biochemistry, Genetics and Molecular Biology 48 18%
Chemistry 35 13%
Engineering 16 6%
Computer Science 14 5%
Other 43 16%
Unknown 62 23%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 16 February 2017.
All research outputs
#4,261,980
of 24,288,381 outputs
Outputs from Journal of Cheminformatics
#383
of 893 outputs
Outputs of similar age
#51,950
of 272,709 outputs
Outputs of similar age from Journal of Cheminformatics
#8
of 15 outputs
Altmetric has tracked 24,288,381 research outputs across all sources so far. Compared to these this one has done well and is in the 82nd percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 893 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.5. This one has gotten more attention than average, scoring higher than 57% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 272,709 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 80% of its contemporaries.
We're also able to compare this research output to 15 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 53% of its contemporaries.