↓ Skip to main content

TMEM106B haplotypes have distinct gene expression patterns in aged brain

Overview of attention for article published in Molecular Neurodegeneration, July 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (84th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (60th percentile)

Mentioned by

news
1 news outlet
twitter
7 X users

Citations

dimensions_citation
31 Dimensions

Readers on

mendeley
56 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
TMEM106B haplotypes have distinct gene expression patterns in aged brain
Published in
Molecular Neurodegeneration, July 2018
DOI 10.1186/s13024-018-0268-2
Pubmed ID
Authors

Yingxue Ren, Marka van Blitterswijk, Mariet Allen, Minerva M. Carrasquillo, Joseph S. Reddy, Xue Wang, Thomas G. Beach, Dennis W. Dickson, Nilüfer Ertekin-Taner, Yan W. Asmann, Rosa Rademakers

Abstract

Single nucleotide polymorphisms (SNPs) inherited as one of two common haplotypes at the transmembrane protein 106B (TMEM106B) locus are associated with the risk of multiple neurodegenerative diseases, including frontotemporal lobar degeneration with pathological inclusions of TDP-43. Among the associated variants, rs3173615 (encoding p.T185S) is the only coding variant; however, non-coding variants may also contribute to disease risk. It has been reported that the risk haplotype is associated with higher levels of TMEM106B and increased levels of TMEM106B cause cytotoxicity; however, the precise mechanism through which TMEM106B haplotypes contribute to neurodegeneration is unclear. We utilized RNA sequencing data derived from temporal cortex (TCX) and cerebellum (CER) from 312 North American Caucasian subjects neuropathologically diagnosed with Alzheimer's disease, progressive supranuclear palsy, pathological aging or normal controls to analyze transcriptome signatures associated with the risk (TT) and protective (SS) TMEM106B haplotypes. In cohorts matched for disease phenotype, we used Analysis of Variance (ANOVA) to identify differentially expressed genes and Weighted Gene Co-expression Network Analysis (WGCNA) to identify gene networks associated with the risk and protective TMEM106B haplotypes. A total of 110 TCX and 116 CER samples were included in the analyses. When comparing TT to SS carriers, we detected 593 differentially expressed genes in TCX and 7 in CER. Gene co-expression network analyses further showed that in both TCX and CER the SS haplotype was positively correlated with gene networks involved in synaptic transmission, whereas the TT haplotype was positively correlated with gene networks enriched for immune response. Gene expression patterns of 5 cell-type-specific markers revealed significantly reduced expression of the neuronal marker and relative increases in all other cell markers in TT as compared to SS carriers in TCX with a similar but non-significant trend in CER. By comparing the common TMEM106B risk and protective haplotypes we identified significant and partly conserved transcriptional differences across TCX and CER and striking changes in cell-type composition, especially in TCX. These findings illustrate the profound effect of TMEM106B haplotypes on brain health and highlight the importance to better understand TMEM106B's function and dysfunction in the context of neurodegenerative diseases.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 56 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 56 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 18%
Student > Ph. D. Student 10 18%
Student > Bachelor 8 14%
Student > Master 5 9%
Student > Doctoral Student 3 5%
Other 7 13%
Unknown 13 23%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 13 23%
Neuroscience 9 16%
Medicine and Dentistry 7 13%
Computer Science 3 5%
Agricultural and Biological Sciences 3 5%
Other 7 13%
Unknown 14 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 13. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2023.
All research outputs
#2,556,785
of 24,717,821 outputs
Outputs from Molecular Neurodegeneration
#329
of 929 outputs
Outputs of similar age
#51,344
of 333,194 outputs
Outputs of similar age from Molecular Neurodegeneration
#9
of 20 outputs
Altmetric has tracked 24,717,821 research outputs across all sources so far. Compared to these this one has done well and is in the 89th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 929 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 16.0. This one has gotten more attention than average, scoring higher than 63% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 333,194 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 84% of its contemporaries.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.