↓ Skip to main content

Short linear motifs in intrinsically disordered regions modulate HOG signaling capacity

Overview of attention for article published in BMC Systems Biology, July 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
26 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Short linear motifs in intrinsically disordered regions modulate HOG signaling capacity
Published in
BMC Systems Biology, July 2018
DOI 10.1186/s12918-018-0597-3
Pubmed ID
Authors

Bob Strome, Ian Shenyen Hsu, Mitchell Li Cheong Man, Taraneh Zarin, Alex Nguyen Ba, Alan M. Moses

Abstract

The effort to characterize intrinsically disordered regions of signaling proteins is rapidly expanding. An important class of disordered interaction modules are ubiquitous and functionally diverse elements known as short linear motifs (SLiMs). To further examine the role of SLiMs in signal transduction, we used a previously devised bioinformatics method to predict evolutionarily conserved SLiMs within a well-characterized pathway in S. cerevisiae. Using a single cell, reporter-based flow cytometry assay in conjunction with a fluorescent reporter driven by a pathway-specific promoter, we quantitatively assessed pathway output via systematic deletions of individual motifs. We found that, when deleted, 34% (10/29) of predicted SLiMs displayed a significant decrease in pathway output, providing evidence that these motifs play a role in signal transduction. Assuming that mutations in SLiMs have quantitative effects on mechanisms of signaling, we show that perturbations of parameters in a previously published stochastic model of HOG signaling could reproduce the quantitative effects of 4 out of 7 mutations in previously unknown SLiMs. Our study suggests that, even in well-characterized pathways, large numbers of functional elements remain undiscovered, and that challenges remain for application of systems biology models to interpret the effects of mutations in signaling pathways.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 26 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 26 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 7 27%
Student > Ph. D. Student 4 15%
Student > Doctoral Student 3 12%
Student > Master 2 8%
Professor 1 4%
Other 2 8%
Unknown 7 27%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 9 35%
Agricultural and Biological Sciences 2 8%
Immunology and Microbiology 2 8%
Computer Science 1 4%
Chemical Engineering 1 4%
Other 2 8%
Unknown 9 35%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2019.
All research outputs
#17,982,872
of 23,094,276 outputs
Outputs from BMC Systems Biology
#772
of 1,144 outputs
Outputs of similar age
#236,987
of 327,912 outputs
Outputs of similar age from BMC Systems Biology
#17
of 23 outputs
Altmetric has tracked 23,094,276 research outputs across all sources so far. This one is in the 19th percentile – i.e., 19% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,144 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 27th percentile – i.e., 27% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 327,912 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 22nd percentile – i.e., 22% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 23 others from the same source and published within six weeks on either side of this one. This one is in the 21st percentile – i.e., 21% of its contemporaries scored the same or lower than it.