↓ Skip to main content

Interactive telemedicine: effects on professional practice and health care outcomes

Overview of attention for article published in Cochrane database of systematic reviews, September 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (96th percentile)

Mentioned by

3 news outlets
3 blogs
1 policy source
124 tweeters
3 Facebook pages
1 Google+ user


372 Dimensions

Readers on

1560 Mendeley
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Interactive telemedicine: effects on professional practice and health care outcomes
Published in
Cochrane database of systematic reviews, September 2015
DOI 10.1002/14651858.cd002098.pub2
Pubmed ID

Gerd Flodgren, Antoine Rachas, Andrew J Farmer, Marco Inzitari, Sasha Shepperd


Telemedicine (TM) is the use of telecommunication systems to deliver health care at a distance. It has the potential to improve patient health outcomes, access to health care and reduce healthcare costs. As TM applications continue to evolve it is important to understand the impact TM might have on patients, healthcare professionals and the organisation of care. To assess the effectiveness, acceptability and costs of interactive TM as an alternative to, or in addition to, usual care (i.e. face-to-face care, or telephone consultation). We searched the Effective Practice and Organisation of Care (EPOC) Group's specialised register, CENTRAL, MEDLINE, EMBASE, five other databases and two trials registers to June 2013, together with reference checking, citation searching, handsearching and contact with study authors to identify additional studies. We considered randomised controlled trials of interactive TM that involved direct patient-provider interaction and was delivered in addition to, or substituting for, usual care compared with usual care alone, to participants with any clinical condition. We excluded telephone only interventions and wholly automatic self-management TM interventions. For each condition, we pooled outcome data that were sufficiently homogenous using fixed effect meta-analysis. We reported risk ratios (RR) and 95% confidence intervals (CI) for dichotomous outcomes, and mean differences (MD) for continuous outcomes. We included 93 eligible trials (N = 22,047 participants), which evaluated the effectiveness of interactive TM delivered in addition to (32% of studies), as an alternative to (57% of studies), or partly substituted for usual care (11%) as compared to usual care alone.The included studies recruited patients with the following clinical conditions: cardiovascular disease (36), diabetes (21), respiratory conditions (9), mental health or substance abuse conditions (7), conditions requiring a specialist consultation (6), co morbidities (3), urogenital conditions (3), neurological injuries and conditions (2), gastrointestinal conditions (2), neonatal conditions requiring specialist care (2), solid organ transplantation (1), and cancer (1).Telemedicine provided remote monitoring (55 studies), or real-time video-conferencing (38 studies), which was used either alone or in combination. The main TM function varied depending on clinical condition, but fell typically into one of the following six categories, with some overlap: i) monitoring of a chronic condition to detect early signs of deterioration and prompt treatment and advice, (41); ii) provision of treatment or rehabilitation (12), for example the delivery of cognitive behavioural therapy, or incontinence training; iii) education and advice for self-management (23), for example nurses delivering education to patients with diabetes or providing support to parents of very low birth weight infants or to patients with home parenteral nutrition; iv) specialist consultations for diagnosis and treatment decisions (8), v) real-time assessment of clinical status, for example post-operative assessment after minor operation or follow-up after solid organ transplantation (8) vi), screening, for angina (1).The type of data transmitted by the patient, the frequency of data transfer, (e.g. telephone, e-mail, SMS) and frequency of interactions between patient and healthcare provider varied across studies, as did the type of healthcare provider/s and healthcare system involved in delivering the intervention.We found no difference between groups for all-cause mortality for patients with heart failure (16 studies; N = 5239; RR:0.89, 95% CI 0.76 to 1.03, P = 0.12; I(2) = 44%) (moderate to high certainty of evidence) at a median of six months follow-up. Admissions to hospital (11 studies; N = 4529) ranged from a decrease of 64% to an increase of 60% at median eight months follow-up (moderate certainty of evidence). We found some evidence of improved quality of life (five studies; N = 482; MD:-4.39, 95% CI -7.94 to -0.83; P < 0.02; I(2) = 0%) (moderate certainty of evidence) for those allocated to TM as compared with usual care at a median three months follow-up. In studies recruiting participants with diabetes (16 studies; N = 2768) we found lower glycated haemoglobin (HbA1c %) levels in those allocated to TM than in controls (MD -0.31, 95% CI -0.37 to -0.24; P < 0.00001; I(2)= 42%, P = 0.04) (high certainty of evidence) at a median of nine months follow-up. We found some evidence for a decrease in LDL (four studies, N = 1692; MD -12.45, 95% CI -14.23 to -10.68; P < 0.00001; I(2 =) 0%) (moderate certainty of evidence), and blood pressure (four studies, N = 1770: MD: SBP:-4.33, 95% CI -5.30 to -3.35, P < 0.00001; I(2) = 17%; DBP: -2.75 95% CI -3.28 to -2.22, P < 0.00001; I(2) = 45% (moderate certainty evidence), in TM as compared with usual care.Seven studies that recruited participants with different mental health and substance abuse problems, reported no differences in the effect of therapy delivered over video-conferencing, as compared to face-to-face delivery. Findings from the other studies were inconsistent; there was some evidence that monitoring via TM improved blood pressure control in participants with hypertension, and a few studies reported improved symptom scores for those with a respiratory condition. Studies recruiting participants requiring mental health services and those requiring specialist consultation for a dermatological condition reported no differences between groups. The findings in our review indicate that the use of TM in the management of heart failure appears to lead to similar health outcomes as face-to-face or telephone delivery of care; there is evidence that TM can improve the control of blood glucose in those with diabetes. The cost to a health service, and acceptability by patients and healthcare professionals, is not clear due to limited data reported for these outcomes. The effectiveness of TM may depend on a number of different factors, including those related to the study population e.g. the severity of the condition and the disease trajectory of the participants, the function of the intervention e.g., if it is used for monitoring a chronic condition, or to provide access to diagnostic services, as well as the healthcare provider and healthcare system involved in delivering the intervention.

Twitter Demographics

The data shown below were collected from the profiles of 124 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 1,560 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 4 <1%
Switzerland 2 <1%
Spain 2 <1%
Brazil 1 <1%
Chile 1 <1%
South Africa 1 <1%
Ethiopia 1 <1%
Canada 1 <1%
Portugal 1 <1%
Other 1 <1%
Unknown 1545 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 322 21%
Researcher 212 14%
Student > Bachelor 183 12%
Student > Ph. D. Student 143 9%
Student > Postgraduate 90 6%
Other 310 20%
Unknown 300 19%
Readers by discipline Count As %
Medicine and Dentistry 527 34%
Nursing and Health Professions 261 17%
Social Sciences 97 6%
Psychology 95 6%
Agricultural and Biological Sciences 30 2%
Other 184 12%
Unknown 366 23%

Attention Score in Context

This research output has an Altmetric Attention Score of 126. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 03 August 2020.
All research outputs
of 17,360,236 outputs
Outputs from Cochrane database of systematic reviews
of 11,660 outputs
Outputs of similar age
of 246,510 outputs
Outputs of similar age from Cochrane database of systematic reviews
of 258 outputs
Altmetric has tracked 17,360,236 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,660 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 25.0. This one has done particularly well, scoring higher than 96% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 246,510 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 258 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 96% of its contemporaries.