↓ Skip to main content

How Online Communities of People With Long-Term Conditions Function and Evolve: Network Analysis of the Structure and Dynamics of the Asthma UK and British Lung Foundation Online Communities

Overview of attention for article published in Journal of Medical Internet Research, July 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)

Mentioned by

twitter
72 tweeters
facebook
3 Facebook pages
video
1 video uploader

Citations

dimensions_citation
1 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
How Online Communities of People With Long-Term Conditions Function and Evolve: Network Analysis of the Structure and Dynamics of the Asthma UK and British Lung Foundation Online Communities
Published in
Journal of Medical Internet Research, July 2018
DOI 10.2196/jmir.9952
Pubmed ID
Authors

Sagar Joglekar, Nishanth Sastry, Neil S Coulson, Stephanie JC Taylor, Anita Patel, Robbie Duschinsky, Amrutha Anand, Matt Jameson Evans, Chris J Griffiths, Aziz Sheikh, Pietro Panzarasa, Anna De Simoni

Abstract

Self-management support can improve health and reduce health care utilization by people with long-term conditions. Online communities for people with long-term conditions have the potential to influence health, usage of health care resources, and facilitate illness self-management. Only recently, however, has evidence been reported on how such communities function and evolve, and how they support self-management of long-term conditions in practice. The aim of this study is to gain a better understanding of the mechanisms underlying online self-management support systems by analyzing the structure and dynamics of the networks connecting users who write posts over time. We conducted a longitudinal network analysis of anonymized data from 2 patients' online communities from the United Kingdom: the Asthma UK and the British Lung Foundation (BLF) communities in 2006-2016 and 2012-2016, respectively. The number of users and activity grew steadily over time, reaching 3345 users and 32,780 posts in the Asthma UK community, and 19,837 users and 875,151 posts in the BLF community. People who wrote posts in the Asthma UK forum tended to write at an interval of 1-20 days and six months, while those in the BLF community wrote at an interval of two days. In both communities, most pairs of users could reach one another either directly or indirectly through other users. Those who wrote a disproportionally large number of posts (the superusers) represented 1% of the overall population of both Asthma UK and BLF communities and accounted for 32% and 49% of the posts, respectively. Sensitivity analysis showed that the removal of superusers would cause the communities to collapse. Thus, interactions were held together by very few superusers, who posted frequently and regularly, 65% of them at least every 1.7 days in the BLF community and 70% every 3.1 days in the Asthma UK community. Their posting activity indirectly facilitated tie formation between other users. Superusers were a constantly available resource, with a mean of 80 and 20 superusers active at any one time in the BLF and Asthma UK communities, respectively. Over time, the more active users became, the more likely they were to reply to other users' posts rather than to write new ones, shifting from a help-seeking to a help-giving role. This might suggest that superusers were more likely to provide than to seek advice. In this study, we uncover key structural properties related to the way users interact and sustain online health communities. Superusers' engagement plays a fundamental sustaining role and deserves research attention. Further studies are needed to explore network determinants of the effectiveness of online engagement concerning health-related outcomes. In resource-constrained health care systems, scaling up online communities may offer a potentially accessible, wide-reaching and cost-effective intervention facilitating greater levels of self-management.

Twitter Demographics

The data shown below were collected from the profiles of 72 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 11 35%
Student > Ph. D. Student 9 29%
Student > Doctoral Student 5 16%
Researcher 5 16%
Student > Master 4 13%
Other 10 32%
Readers by discipline Count As %
Unspecified 14 45%
Medicine and Dentistry 7 23%
Social Sciences 6 19%
Computer Science 5 16%
Nursing and Health Professions 3 10%
Other 9 29%

Attention Score in Context

This research output has an Altmetric Attention Score of 51. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 01 August 2019.
All research outputs
#352,263
of 13,715,693 outputs
Outputs from Journal of Medical Internet Research
#305
of 3,175 outputs
Outputs of similar age
#13,921
of 267,022 outputs
Outputs of similar age from Journal of Medical Internet Research
#1
of 1 outputs
Altmetric has tracked 13,715,693 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,175 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.6. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,022 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 1 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them