↓ Skip to main content

Collimator scatter factor: Monte Carlo and in-air measurements approaches

Overview of attention for article published in Radiation Oncology, July 2018
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Collimator scatter factor: Monte Carlo and in-air measurements approaches
Published in
Radiation Oncology, July 2018
DOI 10.1186/s13014-018-1070-6
Pubmed ID
Authors

A. Fogliata, A. Stravato, G. Reggiori, S. Tomatis, J. Würfel, M. Scorsetti, L. Cozzi

Abstract

Linac output as a function of field sizes has a phantom and a head scatter component. This last term can be measured in-air with appropriate build-up ensuring a complete electron equilibrium and the absence of the contaminant electrons. Equilibrium conditions could be achieved using a build-up cap or a mini-phantom. Monte Carlo simulations in a virtual phantom mimicking a mini-phantom were analysed with the aim of better understanding the setup conditions for measuring the collimator scatter factor that is the head scatter component of the linac output factors. Beams of 6 and 15 MV from a TrueBeam, with size from 4 × 4 to 40 × 40 cm2 were simulated in cylindrical acrylic phantoms 20 cm long, of different diameters, from 0.5 to 4 cm, with the cylinder axis coincident with the beam central axis. The PRIMO package, based on PENELOPE Monte Carlo code, was used. The phase-space files for a Varian TrueBeam linac, provided by the linac vendor, were used for the linac head simulation. Depth dose curves were analysed, and collimator scatter factors estimated at different depth in the different phantom conditions. Additionally, in-air measurements using acyrilic and brass build-up caps, as well as acrylic mini-phantom were acquired for 6 and 18 MV beams from a Varian Clinac DHX. The depth dose curves along the cylinders were compared, showing, in each phantom, very similar curves for all analysed field sizes, proving the correctness in estimating the collimator scatter factor in the mini-phantom, provided to position the detector to a sufficient depth to exclude electron contamination. The results were confirmed by the measurements, where the acrylic build-up cap showed to be inadequate to properly estimate the collimator scatter factors, while the mini-phantom and the brass caps gave reasonable measurements. A better understanding of the beam characteristics inside a virtual mini-phantom through the analysis of depth dose curves, showed the critical points of using the acrylic build-up cap, and suggested the use of the mini-phantom for the collimator scatter factor measurements in the medium-large field size range.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 10 32%
Other 2 6%
Lecturer 1 3%
Student > Master 1 3%
Student > Bachelor 1 3%
Other 2 6%
Unknown 14 45%
Readers by discipline Count As %
Physics and Astronomy 10 32%
Medicine and Dentistry 2 6%
Environmental Science 1 3%
Computer Science 1 3%
Nursing and Health Professions 1 3%
Other 2 6%
Unknown 14 45%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 July 2018.
All research outputs
#20,527,576
of 23,096,849 outputs
Outputs from Radiation Oncology
#1,696
of 2,079 outputs
Outputs of similar age
#286,266
of 326,767 outputs
Outputs of similar age from Radiation Oncology
#27
of 30 outputs
Altmetric has tracked 23,096,849 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,079 research outputs from this source. They receive a mean Attention Score of 2.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 326,767 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.