↓ Skip to main content

Maternal auxin supply contributes to early embryo patterning in Arabidopsis

Overview of attention for article published in Nature Plants, July 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (87th percentile)

Citations

dimensions_citation
125 Dimensions

Readers on

mendeley
203 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Maternal auxin supply contributes to early embryo patterning in Arabidopsis
Published in
Nature Plants, July 2018
DOI 10.1038/s41477-018-0204-z
Pubmed ID
Authors

Hélène S. Robert, Chulmin Park, Carla Loreto Gutièrrez, Barbara Wójcikowska, Aleš Pěnčík, Ondřej Novák, Junyi Chen, Wim Grunewald, Thomas Dresselhaus, Jiří Friml, Thomas Laux

Abstract

The angiosperm seed is composed of three genetically distinct tissues: the diploid embryo that originates from the fertilized egg cell, the triploid endosperm that is produced from the fertilized central cell, and the maternal sporophytic integuments that develop into the seed coat1. At the onset of embryo development in Arabidopsis thaliana, the zygote divides asymmetrically, producing a small apical embryonic cell and a larger basal cell that connects the embryo to the maternal tissue2. The coordinated and synchronous development of the embryo and the surrounding integuments, and the alignment of their growth axes, suggest communication between maternal tissues and the embryo. In contrast to animals, however, where a network of maternal factors that direct embryo patterning have been identified3,4, only a few maternal mutations have been described to affect embryo development in plants5-7. Early embryo patterning in Arabidopsis requires accumulation of the phytohormone auxin in the apical cell by directed transport from the suspensor8-10. However, the origin of this auxin has remained obscure. Here we investigate the source of auxin for early embryogenesis and provide evidence that the mother plant coordinates seed development by supplying auxin to the early embryo from the integuments of the ovule. We show that auxin response increases in ovules after fertilization, due to upregulated auxin biosynthesis in the integuments, and this maternally produced auxin is required for correct embryo development.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 203 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 203 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 47 23%
Researcher 30 15%
Student > Master 18 9%
Student > Bachelor 12 6%
Student > Doctoral Student 10 5%
Other 27 13%
Unknown 59 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 73 36%
Biochemistry, Genetics and Molecular Biology 58 29%
Chemistry 2 <1%
Business, Management and Accounting 1 <1%
Arts and Humanities 1 <1%
Other 2 <1%
Unknown 66 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 176. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 January 2020.
All research outputs
#229,025
of 25,385,509 outputs
Outputs from Nature Plants
#103
of 2,042 outputs
Outputs of similar age
#4,857
of 339,622 outputs
Outputs of similar age from Nature Plants
#8
of 65 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 2,042 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 50.6. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 339,622 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 87% of its contemporaries.