↓ Skip to main content

Xenopus

Overview of attention for book
Cover of 'Xenopus'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Husbandry, General Care, and Transportation of Xenopus laevis and Xenopus tropicalis
  3. Altmetric Badge
    Chapter 2 Generation and Care of Xenopus laevis and Xenopus tropicalis Embryos
  4. Altmetric Badge
    Chapter 3 Methods for CRISPR/Cas9 Xenopus tropicalis Tissue-Specific Multiplex Genome Engineering
  5. Altmetric Badge
    Chapter 4 Targeted Genome Engineering in Xenopus Using the Transcription Activator-Like Effector Nuclease (TALEN) Technology
  6. Altmetric Badge
    Chapter 5 Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis
  7. Altmetric Badge
    Chapter 6 BATCH-GE: Analysis of NGS Data for Genome Editing Assessment
  8. Altmetric Badge
    Chapter 7 A Simple Knock-In System for Xenopus via Microhomology Mediated End Joining Repair
  9. Altmetric Badge
    Chapter 8 How to Generate Non-Mosaic CRISPR/Cas9 Mediated Knock-In and Mutations in F0 Xenopus Through the Host-Transfer Technique
  10. Altmetric Badge
    Chapter 9 Targeted Electroporation in the CNS in Xenopus Embryos
  11. Altmetric Badge
    Chapter 10 Conditional Chemogenetic Ablation of Photoreceptor Cells in Xenopus Retina
  12. Altmetric Badge
    Chapter 11 Cancer Models in Xenopus tropicalis by CRISPR/Cas9 Mediated Knockout of Tumor Suppressors
  13. Altmetric Badge
    Chapter 12 CRISPR/Cas9 F0 Screening of Congenital Heart Disease Genes in Xenopus tropicalis
  14. Altmetric Badge
    Chapter 13 Quantitative Proteomics of Xenopus Embryos I, Sample Preparation
  15. Altmetric Badge
    Chapter 14 Quantitative Proteomics for Xenopus Embryos II, Data Analysis
  16. Altmetric Badge
    Chapter 15 Dye Electroporation and Imaging of Calcium Signaling in Xenopus Nervous System
  17. Altmetric Badge
    Chapter 16 X-FaCT: Xenopus-Fast Clearing Technique
  18. Altmetric Badge
    Chapter 17 Cell Cycle Analysis of the Embryonic Brain of Fluorescent Reporter Xenopus tropicalis by Flow Cytometry
  19. Altmetric Badge
    Chapter 18 Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis
  20. Altmetric Badge
    Chapter 19 Evaluating Blood Cell Populations in Xenopus Using Flow Cytometry and Differential Counts by Cytospin
  21. Altmetric Badge
    Chapter 20 Isolation and Culture of Amphibian (Xenopus laevis) Sub-Capsular Liver and Bone Marrow Cells
  22. Altmetric Badge
    Chapter 21 Isolation and Primary Culture Methods of Adult and Larval Myogenic Cells from Xenopus laevis
Attention for Chapter 16: X-FaCT: Xenopus-Fast Clearing Technique
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (64th percentile)
  • High Attention Score compared to outputs of the same age and source (89th percentile)

Mentioned by

twitter
7 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
X-FaCT: Xenopus-Fast Clearing Technique
Chapter number 16
Book title
Xenopus
Published in
Methods in molecular biology, August 2018
DOI 10.1007/978-1-4939-8784-9_16
Pubmed ID
Book ISBNs
978-1-4939-8783-2, 978-1-4939-8784-9
Authors

Pierre Affaticati, Sébastien Le Mével, Arnim Jenett, Laurie Rivière, Elodie Machado, Bilal B. Mughal, Jean-Baptiste Fini, Affaticati, Pierre, Le Mével, Sébastien, Jenett, Arnim, Rivière, Laurie, Machado, Elodie, Mughal, Bilal Babar, Fini, Jean-Baptiste, Mével, Sébastien, Mughal, Bilal B.

Abstract

Accessibility and imaging of cell compartments in big specimens are crucial for cellular biological research but also a matter of contention. Confocal imaging and tissue clearing on whole organs allow for 3D imaging of cellular structures after being subjected to in-toto immunohistochemistry. Lately, the passive CLARITY technique (PACT) has been adapted to clear and immunolabel large specimens or individual organs of several aquatic species. We recently demonstrated tissue clearing on one-week old tadpole brain (Fini et al., Sci Rep 7:43786, 2017). We here describe a further simplified version with clearing of small tissue samples (thickness inferior to 500 μm)) carried out by immersion in a fructose-based high-refractive index solution (fbHRI). By refining steps of the protocol, we were able to reduce the overall procedure time by two thirds. This offers the advantages of reducing the time of experimentation to a week and minimizes procedure-induced tissue deformations. This protocol can be easily adapted to be performed on thick section. We present an example of immunohistochemistry performed on NF45 Xenopus laevis brains with anti-pH 3 (phosphorylated histone H3) antibody used to stain chromatin condensation commonly associated with proliferation.

X Demographics

X Demographics

The data shown below were collected from the profiles of 7 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 3 21%
Student > Ph. D. Student 3 21%
Student > Postgraduate 2 14%
Student > Master 1 7%
Student > Bachelor 1 7%
Other 0 0%
Unknown 4 29%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 21%
Agricultural and Biological Sciences 3 21%
Neuroscience 2 14%
Veterinary Science and Veterinary Medicine 1 7%
Unknown 5 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 May 2020.
All research outputs
#6,518,121
of 23,102,082 outputs
Outputs from Methods in molecular biology
#1,975
of 13,208 outputs
Outputs of similar age
#114,935
of 334,863 outputs
Outputs of similar age from Methods in molecular biology
#26
of 248 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one has received more attention than most of these and is in the 70th percentile.
So far Altmetric has tracked 13,208 research outputs from this source. They receive a mean Attention Score of 3.4. This one has done well, scoring higher than 84% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,863 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 64% of its contemporaries.
We're also able to compare this research output to 248 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 89% of its contemporaries.