↓ Skip to main content

Screening and subsequent management for thyroid dysfunction pre-pregnancy and during pregnancy for improving maternal and infant health

Overview of attention for article published in Cochrane database of systematic reviews, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (82nd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
10 tweeters
facebook
1 Facebook page
wikipedia
2 Wikipedia pages

Citations

dimensions_citation
22 Dimensions

Readers on

mendeley
257 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Screening and subsequent management for thyroid dysfunction pre-pregnancy and during pregnancy for improving maternal and infant health
Published in
Cochrane database of systematic reviews, September 2015
DOI 10.1002/14651858.cd011263.pub2
Pubmed ID
Authors

Laura Spencer, Tanya Bubner, Emily Bain, Philippa Middleton

Abstract

Thyroid dysfunction pre-pregnancy and during pregnancy (both hyper- and hypothyroidism) is associated with increased risk of adverse outcomes for mothers and infants in the short- and long-term. Managing the thyroid dysfunction (e.g. thyroxine for hypothyroidism, or antithyroid medication for hyperthyroidism) may improve outcomes. The best method of screening to identify and subsequently manage thyroid dysfunction pre-pregnancy and during pregnancy is unknown. To assess the effects of different screening methods (and subsequent management) for thyroid dysfunction pre-pregnancy and during pregnancy on maternal and infant outcomes. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (14 July 2015) and reference lists of retrieved studies. Randomised or quasi-randomised controlled trials, comparing any screening method (e.g. tool, program, guideline/protocol) for detecting thyroid dysfunction (including hypothyroidism, hyperthyroidism, and/or thyroid autoimmunity) pre-pregnancy or during pregnancy with no screening, or alternative screening methods. Two review authors independently assessed eligibility of studies, extracted and checked data accuracy, and assessed the risk of bias of included studies. We included two randomised controlled trials (involving 26,408 women) - these trials were considered to be at low risk of bias. Universal screening (screening all women) versus case finding (screening only those at perceived increased risk) in pregnancy for thyroid dysfunctionOne trial (4562 women) compared universal screening with case finding for thyroid dysfunction. Before 11 weeks' gestation, women in the universal screening group, and 'high-risk' women in the case finding group had their sera tested for TSH (thyroid stimulating hormone), fT4 (free thyroxine) and TPO-Ab (thyroid peroxidase antibody); women with hypothyroidism (TSH > 2.5 mIU/litre) received levothyroxine; women with hyperthyroidism (undetectable TSH and elevated fT4) received antithyroid medication.In regards to this review's primary outcomes, compared with the case finding group, more women in the universal screening group were diagnosed with hypothyroidism (risk ratio (RR) 3.15, 95% confidence interval (CI) 1.91 to 5.20; 4562 women; GRADE: high quality evidence), with a trend towards more women being diagnosed with hyperthyroidism (RR 4.50, 95% CI 0.97 to 20.82; 4562 women; P = 0.05; GRADE: moderate quality evidence). No clear differences were seen in the risks of pre-eclampsia (RR 0.87, 95% CI 0.64 to 1.18; 4516 women; GRADE: moderate quality evidence), or preterm birth (RR 0.99, 95% CI 0.80 to 1.24; 4516 women; GRADE: high quality evidence) between groups. This trial did not report on neurosensory disability for the infant as a child.Considering this review's secondary outcomes, more women in the universal screening group received pharmacological treatment for thyroid dysfunction (RR 3.15, 95% CI 1.91 to 5.20; 4562 women). No clear differences between groups were observed for miscarriage (RR 0.90, 95% CI 0.68 to 1.19; 4516 women; GRADE: moderate quality evidence), fetal and neonatal death (RR 0.92, 95% CI 0.42 to 2.02; 4516 infants; GRADE: moderate quality evidence), or other secondary outcomes: pregnancy-induced hypertension, gestational diabetes, congestive heart failure, thyroid storm, mode of birth (caesarean section), preterm labour, placental abruption, respiratory distress syndrome, low birthweight, neonatal intensive care unit admission, or other congenital malformations. The trial did not report on a number of outcomes including adverse effects associated with the intervention. Universal screening versus no screening in pregnancy for hypothyroidismOne trial (21,846 women) compared universal screening with no screening for hypothyroidism. Before 15 + 6 weeks' gestation, women in the universal screening group had their sera tested; women who screened 'positive' (TSH > 97.5th percentile, fT4 < 2.5th percentile, or both) received levothyroxine.Considering primary review outcomes, compared with the no screening group, more women in the universal screening screened 'positive' for hypothyroidism (RR 998.18, 95% CI 62.36 to 15,978.48; 21,839 women; GRADE: high quality evidence). No data were provided for the outcome pre-eclampsia, and for preterm birth, the trial reported rates of 5.6% and 7.9% for the screening and no screening groups respectively (it was unclear if these percentages related to the entire cohort or women who screened positive). No clear difference was seen for neurosensory disability for the infant as a child (three-year follow-up IQ score < 85) (RR 0.85, 95% CI 0.60 to 1.22; 794 infants; GRADE: moderate quality evidence).More women in the universal screening group received pharmacological treatment for thyroid dysfunction (RR 1102.90, 95% CI 69.07 to 17,610.46; 1050 women); 10% had their dose lowered because of low TSH, high fT4 or minor side effects. No clear differences were observed for other secondary outcomes, including developmental delay/intellectual impairment at three years. Most of our secondary outcomes, including miscarriage, fetal or neonatal death were not reported. Based on the existing evidence, though universal screening for thyroid dysfunction in pregnancy increases the number of women diagnosed with hypothyroidism who can be subsequently treated, it does not clearly impact (benefit or harm) maternal and infant outcomes.While universal screening versus case finding for thyroid dysfunction increased diagnosis and subsequent treatment, we found no clear differences for the primary outcomes: pre-eclampsia or preterm birth. No clear differences were seen for secondary outcomes, including miscarriage and fetal or neonatal death; data were lacking for the primary outcome: neurosensory disability for the infant as a child, and for many secondary outcomes. Though universal screening versus no screening for hypothyroidism similarly increased diagnosis and subsequent treatment, no clear difference was seen for the primary outcome: neurosensory disability for the infant as a child (IQ < 85 at three years); data were lacking for the other primary outcomes: pre-eclampsia and preterm birth, and for the majority of secondary outcomes.For outcomes assessed using the GRADE approach the evidence was considered to be moderate or high quality, with any downgrading of the evidence based on the presence of wide confidence intervals crossing the line of no effect.More evidence is needed to assess the benefits or harms of different screening methods for thyroid dysfunction in pregnancy, on maternal, infant and child health outcomes. Future trials should assess impacts on use of health services and costs, and be adequately powered to evaluate the effects on short- and long-term outcomes.

Twitter Demographics

The data shown below were collected from the profiles of 10 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 257 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Spain 1 <1%
Unknown 256 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 61 24%
Researcher 37 14%
Student > Bachelor 36 14%
Unspecified 33 13%
Student > Ph. D. Student 29 11%
Other 61 24%
Readers by discipline Count As %
Medicine and Dentistry 126 49%
Unspecified 47 18%
Nursing and Health Professions 24 9%
Psychology 18 7%
Social Sciences 14 5%
Other 28 11%

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 December 2017.
All research outputs
#2,008,487
of 13,190,464 outputs
Outputs from Cochrane database of systematic reviews
#4,742
of 10,519 outputs
Outputs of similar age
#44,382
of 247,539 outputs
Outputs of similar age from Cochrane database of systematic reviews
#162
of 269 outputs
Altmetric has tracked 13,190,464 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,519 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 20.6. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 247,539 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 82% of its contemporaries.
We're also able to compare this research output to 269 others from the same source and published within six weeks on either side of this one. This one is in the 39th percentile – i.e., 39% of its contemporaries scored the same or lower than it.