↓ Skip to main content

Plant Transcription Factors

Overview of attention for book
Cover of 'Plant Transcription Factors'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Master Regulatory Transcription Factors in Plant Development: A Blooming Perspective
  3. Altmetric Badge
    Chapter 2 Application of CRISPR/Cas to Understand Cis- and Trans-Regulatory Elements in Plants
  4. Altmetric Badge
    Chapter 3 The Long-Term “In Natura” Study Sites of Arabidopsis halleri for Plant Transcription and Epigenetic Modification Analyses in Natural Environments
  5. Altmetric Badge
    Chapter 4 Generation of Inducible Transgenic Lines of Arabidopsis Transcription Factors Regulated by MicroRNAs
  6. Altmetric Badge
    Chapter 5 A Specific Knockdown of Transcription Factor Activities in Arabidopsis
  7. Altmetric Badge
    Chapter 6 Using CRISPR/Cas9 System to Introduce Targeted Mutation in Arabidopsis
  8. Altmetric Badge
    Chapter 7 CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha
  9. Altmetric Badge
    Chapter 8 Cell-Type-Specific Promoter Identification Using Enhancer Trap Lines
  10. Altmetric Badge
    Chapter 9 Isolation of Arabidopsis Palisade and Spongy Mesophyll Cells
  11. Altmetric Badge
    Chapter 10 Ectopic Vascular Induction in Arabidopsis Cotyledons for Sequential Analysis of Phloem Differentiation
  12. Altmetric Badge
    Chapter 11 High Impact Gene Discovery: Simple Strand-Specific mRNA Library Construction and Differential Regulatory Analysis Based on Gene Co-Expression Network
  13. Altmetric Badge
    Chapter 12 Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti
  14. Altmetric Badge
    Chapter 13 NanoCAGE-XL: An Approach to High-Confidence Transcription Start Site Sequencing
  15. Altmetric Badge
    Chapter 14 Genome-Wide TSS Identification in Maize
  16. Altmetric Badge
    Chapter 15 Three-Dimensional Multiphoton Imaging of Transcription Factor by ClearSee
  17. Altmetric Badge
    Chapter 16 Two-Color In Situ Hybridization: A Technique for Simultaneous Detection of Transcripts from Different Loci
  18. Altmetric Badge
    Chapter 17 Gene Expression and Transcription Factor Binding Tests Using Mutated-Promoter Reporter Lines
  19. Altmetric Badge
    Chapter 18 Rapid and Quantitative CELD Assay to Measure the Specificity of Transcription Factor-DNA-Binding Interactions and Identify cis-Elements
  20. Altmetric Badge
    Chapter 19 In Situ Proximity Ligation Assay to Detect the Interaction Between Plant Transcription Factors and Other Regulatory Proteins
  21. Altmetric Badge
    Chapter 20 Cell-Free Protein Synthesis of Plant Transcription Factors
  22. Altmetric Badge
    Chapter 21 Application of MNase-Seq in the Global Mapping of Nucleosome Positioning in Plants
  23. Altmetric Badge
    Chapter 22 Genome-Wide Mapping of DNase I Hypersensitive Sites in Tomato
  24. Altmetric Badge
    Chapter 23 Genome-Wide Identification of Chromatin Domains Anchored at the Nuclear Periphery in Plants
Attention for Chapter 8: Cell-Type-Specific Promoter Identification Using Enhancer Trap Lines
Altmetric Badge

Citations

dimensions_citation
4 Dimensions

Readers on

mendeley
9 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Cell-Type-Specific Promoter Identification Using Enhancer Trap Lines
Chapter number 8
Book title
Plant Transcription Factors
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-8657-6_8
Pubmed ID
Book ISBNs
978-1-4939-8656-9, 978-1-4939-8657-6
Authors

Tatyana Radoeva, Shunsuke Saiga, Dolf Weijers, Radoeva, Tatyana, Saiga, Shunsuke, Weijers, Dolf

Abstract

Many developmental processes involve transitions between different cell identities as cells differentiate or undergo reprogramming. Cell identity specifications are generally associated with the activation and suppression of specific sets of genes mediated by transcription factors. Therefore, transcriptional reporters, such as promoters of cell-type-specific genes, are broadly used as cell identity markers in developmental biology. In Arabidopsis (Arabidopsis thaliana), a collection of GAL4/UAS enhancer trap lines is an established standard for inferring cell identity. However, only a few of these enhancer trap lines have been molecularly characterized, which limits their potential. Here, we describe an approach for a detailed characterization of expression and mapping of T-DNA insert location of GAL4/UAS enhancer trap lines. Additionally, we demonstrate how the acquired information can be further used for the generation of novel cell-type-specific promoters as well as for genotyping of enhancer trap lines.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 9 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 9 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 3 33%
Student > Ph. D. Student 2 22%
Researcher 2 22%
Professor 1 11%
Student > Bachelor 1 11%
Other 0 0%
Readers by discipline Count As %
Agricultural and Biological Sciences 5 56%
Biochemistry, Genetics and Molecular Biology 3 33%
Pharmacology, Toxicology and Pharmaceutical Science 1 11%