↓ Skip to main content

A multi-layer monitoring system for clinical management of Congestive Heart Failure

Overview of attention for article published in BMC Medical Informatics and Decision Making, September 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
33 Dimensions

Readers on

mendeley
165 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
A multi-layer monitoring system for clinical management of Congestive Heart Failure
Published in
BMC Medical Informatics and Decision Making, September 2015
DOI 10.1186/1472-6947-15-s3-s5
Pubmed ID
Authors

Gabriele Guidi, Luca Pollonini, Clifford C Dacso, Ernesto Iadanza

Abstract

Congestive Heart Failure (CHF) is a serious cardiac condition that brings high risks of urgent hospitalization and death. Remote monitoring systems are well-suited to managing patients suffering from CHF, and can reduce deaths and re-hospitalizations, as shown by the literature, including multiple systematic reviews. The monitoring system proposed in this paper aims at helping CHF stakeholders make appropriate decisions in managing the disease and preventing cardiac events, such as decompensation, which can lead to hospitalization or death. Monitoring activities are stratified into three layers: scheduled visits to a hospital following up on a cardiac event, home monitoring visits by nurses, and patient's self-monitoring performed at home using specialized equipment. Appropriate hardware, desktop and mobile software applications were developed to enable a patient's monitoring by all stakeholders. For the first two layers, we designed and implemented a Decision Support System (DSS) using machine learning (Random Forest algorithm) to predict the number of decompensations per year and to assess the heart failure severity based on a variety of clinical data. For the third layer, custom-designed sensors (the Blue Scale system) for electrocardiogram (EKG), pulse transit times, bio-impedance and weight allowed frequent collection of CHF-related data in the comfort of the patient's home. We report numerical performances of the DSS, calculated as multiclass accuracy, sensitivity and specificity in a 10-fold cross-validation. The obtained average accuracies are: 71.9% in predicting the number of decompensations and 81.3% in severity assessment. The most serious class in severity assessment is detected with good sensitivity and specificity (0.87 / 0.95), while, in predicting decompensation, high specificity combined with good sensitivity prevents false alarms. The HRV parameters extracted from the self-measured EKG using the Blue Scale system of sensors are comparable with those reported in the literature about healthy people. The performance of DSSs trained with new patients confirmed the results of previous work, and emphasizes the strong correlation between some CHF markers, such as brain natriuretic peptide (BNP) and ejection fraction (EF), with the outputs of interest. Comparing HRV parameters from healthy volunteers with HRV parameters obtained from PhysioBank archives, we confirm the literature that considers the HRV a promising method for distinguishing healthy from CHF patients.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 165 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Netherlands 1 <1%
United States 1 <1%
Unknown 163 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 31 19%
Student > Master 23 14%
Researcher 21 13%
Student > Bachelor 11 7%
Student > Doctoral Student 9 5%
Other 20 12%
Unknown 50 30%
Readers by discipline Count As %
Medicine and Dentistry 29 18%
Computer Science 20 12%
Engineering 19 12%
Nursing and Health Professions 14 8%
Social Sciences 7 4%
Other 20 12%
Unknown 56 34%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 27 September 2015.
All research outputs
#18,427,608
of 22,829,083 outputs
Outputs from BMC Medical Informatics and Decision Making
#1,572
of 1,988 outputs
Outputs of similar age
#192,518
of 267,010 outputs
Outputs of similar age from BMC Medical Informatics and Decision Making
#31
of 38 outputs
Altmetric has tracked 22,829,083 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,988 research outputs from this source. They receive a mean Attention Score of 4.9. This one is in the 9th percentile – i.e., 9% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,010 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 38 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.