↓ Skip to main content

Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages

Overview of attention for article published in BMC Genomics, September 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (68th percentile)

Mentioned by

twitter
7 tweeters

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
52 Mendeley
citeulike
2 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Escherichia coli O157:H7 strains harbor at least three distinct sequence types of Shiga toxin 2a-converting phages
Published in
BMC Genomics, September 2015
DOI 10.1186/s12864-015-1934-1
Pubmed ID
Authors

Shuang Yin, Brigida Rusconi, Fatemeh Sanjar, Kakolie Goswami, Lingzi Xiaoli, Mark Eppinger, Edward G. Dudley

Abstract

Shiga toxin-producing Escherichia coli O157:H7 is a foodborne pathogen that causes severe human diseases including hemolytic uremic syndrome (HUS). The virulence factor that mediates HUS, Shiga toxin (Stx), is encoded within the genome of a lambdoid prophage. Although draft sequences are publicly available for a large number of E. coli O157:H7 strains, the high sequence similarity of stx-converting bacteriophages with other lambdoid prophages poses challenges to accurately assess the organization and plasticity among stx-converting phages due to assembly difficulties. To further explore genome plasticity of stx-converting prophages, we enriched phage DNA from 45 ciprofloxacin-induced cultures for subsequent 454 pyrosequencing to facilitate assembly of the complete phage genomes. In total, 22 stx2a-converting phage genomes were closed. Comparison of the genomes distinguished nine distinct phage sequence types (PSTs) delineated by variation in obtained sequences, such as single nucleotide polymorphisms (SNPs) and insertion sequence element prevalence and location. These nine PSTs formed three distinct clusters, designated as PST1, PST2 and PST3. The PST2 cluster, identified in two clade 8 strains, was related to stx2a-converting phages previously identified in non-O157 Shiga-toxin producing E. coli (STEC) strains associated with a high incidence of HUS. The PST1 cluster contained phages related to those from E. coli O157:H7 strain Sakai (lineage I, clade 1), and PST3 contained a single phage that was distinct from the rest but most related to the phage from E. coli O157:H7 strain EC4115 (lineage I/II, clade 8). Five strains carried identical stx2a-converting phages (PST1-1) integrated at the same chromosomal locus, but these strains produced different levels of Stx2. The stx2a-converting phages of E. coli O157:H7 can be categorized into at least three phage types. Diversification within a phage type is mainly driven by IS629 and by a small number of SNPs. Polymorphisms between phage genomes may help explain differences in Stx2a production between strains, however our data indicates that genes encoded external to the phage affect toxin production as well.

Twitter Demographics

The data shown below were collected from the profiles of 7 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 51 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 23%
Student > Master 12 23%
Researcher 7 13%
Student > Bachelor 4 8%
Student > Postgraduate 3 6%
Other 12 23%
Unknown 2 4%
Readers by discipline Count As %
Agricultural and Biological Sciences 23 44%
Biochemistry, Genetics and Molecular Biology 8 15%
Immunology and Microbiology 8 15%
Veterinary Science and Veterinary Medicine 3 6%
Computer Science 1 2%
Other 6 12%
Unknown 3 6%

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 September 2015.
All research outputs
#1,367,873
of 6,420,027 outputs
Outputs from BMC Genomics
#1,384
of 5,052 outputs
Outputs of similar age
#57,944
of 201,285 outputs
Outputs of similar age from BMC Genomics
#103
of 327 outputs
Altmetric has tracked 6,420,027 research outputs across all sources so far. Compared to these this one has done well and is in the 78th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 5,052 research outputs from this source. They receive a mean Attention Score of 3.9. This one has gotten more attention than average, scoring higher than 72% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 201,285 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 327 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 68% of its contemporaries.