↓ Skip to main content

Using principal component analysis to reduce complex datasets produced by robotic technology in healthy participants

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, July 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
4 X users

Citations

dimensions_citation
10 Dimensions

Readers on

mendeley
61 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Using principal component analysis to reduce complex datasets produced by robotic technology in healthy participants
Published in
Journal of NeuroEngineering and Rehabilitation, July 2018
DOI 10.1186/s12984-018-0416-5
Pubmed ID
Authors

Michael D. Wood, Leif E. R. Simmatis, J. Gordon Boyd, Stephen H. Scott, Jill A. Jacobson

Abstract

The KINARM robot produces a granular dataset of participant performance metrics associated with proprioceptive, motor, visuospatial, and executive function. This comprehensive battery includes several behavioral tasks that each generate 9 to 20 metrics of performance. Therefore, the entire battery of tasks generates well over 100 metrics per participant, which can make clinical interpretation challenging. Therefore, we sought to reduce these multivariate data by applying principal component analysis (PCA) to increase interpretability while minimizing information loss. Healthy right-hand dominant participants were assessed using a bilateral KINARM end-point robot. Subjects (Ns = 101-208) were assessed using 6 behavioral tasks and automated software generated 9 to 20 metrics related to the spatial and temporal aspects of subject performance. Data from these metrics were converted to Z-scores prior to PCA. The number of components was determined from scree plots and parallel analysis, with interpretability considered as a qualitative criterion. Rotation type (orthogonal vs oblique) was decided on a per task basis. The KINARM performance data, per task, was substantially reduced (range 67-79%), while still accounting for a large amount of variance (range 70-82%). The number of KINARM parameters reduced to 3 components for 5 out of 6 tasks and to 5 components for the sixth task. Many components were comprised of KINARM parameters with high loadings and only some cross loadings were observed, which demonstrates a strong separation of components. Complex participant data produced by the KINARM robot can be reduced into a small number of interpretable components by using PCA. Future applications of PCA may offer potential insight into specific patterns of sensorimotor impairment among patient populations.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 61 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 61 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 11 18%
Student > Doctoral Student 7 11%
Researcher 6 10%
Student > Bachelor 5 8%
Student > Ph. D. Student 5 8%
Other 11 18%
Unknown 16 26%
Readers by discipline Count As %
Nursing and Health Professions 9 15%
Neuroscience 8 13%
Engineering 5 8%
Computer Science 3 5%
Agricultural and Biological Sciences 2 3%
Other 12 20%
Unknown 22 36%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 02 August 2018.
All research outputs
#13,386,534
of 23,098,660 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#629
of 1,294 outputs
Outputs of similar age
#163,882
of 329,833 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#16
of 31 outputs
Altmetric has tracked 23,098,660 research outputs across all sources so far. This one is in the 41st percentile – i.e., 41% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,294 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has gotten more attention than average, scoring higher than 50% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 329,833 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 49th percentile – i.e., 49% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 31 others from the same source and published within six weeks on either side of this one. This one is in the 48th percentile – i.e., 48% of its contemporaries scored the same or lower than it.