↓ Skip to main content

Plant Chemical Genomics

Overview of attention for book
Cover of 'Plant Chemical Genomics'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Multi-Parametric Screening in Arabidopsis thaliana Seedlings
  3. Altmetric Badge
    Chapter 2 Novel Micro-Phenotyping Approach to Chemical Genetic Screening for Increased Plant Tolerance to Abiotic Stress
  4. Altmetric Badge
    Chapter 3 Method for Ultrarapid High-Content Screening for Biologically Active Chemicals Using Plant Pollen
  5. Altmetric Badge
    Chapter 4 A High-Throughput Chemical Screening Method for Inhibitors and Potentiators of Hypersensitive Cell Death Using Suspension Cell Culture of Arabidopsis thaliana
  6. Altmetric Badge
    Chapter 5 High-Throughput Screening of Chemical Compound Libraries for Modulators of Salicylic Acid Signaling by In Situ Monitoring of Glucuronidase-Based Reporter Gene Expression
  7. Altmetric Badge
    Chapter 6 Identification of Chemical Inducers of the Phosphate-Starvation Signaling Pathway in A. thaliana Using Chemical Genetics
  8. Altmetric Badge
    Chapter 7 Phenotype-Based Screening of Small Molecules to Modify Plant Cell Walls Using BY-2 Cells
  9. Altmetric Badge
    Chapter 8 Small-Molecule Screening to Increase Agrobacterium -Mediated Transformation Efficiency in Legumes
  10. Altmetric Badge
    Chapter 9 High-Throughput In Vitro Screening for Inhibitors of Cereal α-Glucosidase
  11. Altmetric Badge
    Chapter 10 Chemical Screening for Strigolactone Receptor Antagonists Using Arabidopsis thaliana
  12. Altmetric Badge
    Chapter 11 Chemical Control of ABA Receptors to Enable Plant Protection Against Water Stress
  13. Altmetric Badge
    Chapter 12 Modes of Action Study of Seed Germination Inhibitor Germostatin by Forward Genetics Screening
  14. Altmetric Badge
    Chapter 13 Enantiodifferential Approach for the Target Protein Detection of the Jasmonate Glucoside That Controls the Leaf Closure of Samanea saman
  15. Altmetric Badge
    Chapter 14 Using the QCM Biosensor-Based T7 Phage Display Combined with Bioinformatics Analysis for Target Identification of Bioactive Small Molecule
  16. Altmetric Badge
    Chapter 15 Genomic Identification and Analysis of Specialized Metabolite Biosynthetic Gene Clusters in Plants Using PlantiSMASH
  17. Altmetric Badge
    Chapter 16 Chemical Genomics Translatability from Unicellular to Multicellular Models
  18. Altmetric Badge
    Chapter 17 Chemical Screening for Flagella-Associated Phenotypes in Chlamydomonas reinhardtii
  19. Altmetric Badge
    Chapter 18 FnCpf1-Mediated Targeted Mutagenesis in Plants
  20. Altmetric Badge
    Chapter 19 Erratum to: Chemical Screening for Flagella-Associated Phenotypes in Chlamydomonas reinhardtii
Attention for Chapter 9: High-Throughput In Vitro Screening for Inhibitors of Cereal α-Glucosidase
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (52nd percentile)
  • Good Attention Score compared to outputs of the same age and source (79th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
16 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
High-Throughput In Vitro Screening for Inhibitors of Cereal α-Glucosidase
Chapter number 9
Book title
Plant Chemical Genomics
Published in
Methods in molecular biology, January 2018
DOI 10.1007/978-1-4939-7874-8_9
Pubmed ID
Book ISBNs
978-1-4939-7873-1, 978-1-4939-7874-8
Authors

Michael D. Rugen, Martin Rejzek, Henrik Naested, Birte Svensson, Robert A. Field, Rugen, Michael D., Rejzek, Martin, Naested, Henrik, Svensson, Birte, Field, Robert A.

Abstract

The hydrolysis of starch is a key step in plant germination, which also has relevance in the malting and brewing processes for beer and spirit production. Gaps in knowledge about this metabolic process exist that cannot easily be addressed using traditional genetic techniques, due to functional redundancy in many of the enzyme activities required for alpha-glucan metabolism in cereal crop species. Chemical inhibitors provide opportunities to probe the role of carbohydrate-active enzymes and the phenotypes associated with inhibition of specific enzymes. Iminosugars are the largest group of carbohydrate-active enzyme inhibitors and represent an underused resource for the dissection of plant carbohydrate metabolism. Herein we report a method for carrying out a reverse chemical genetic screen on α-glucosidase, the enzyme that catalyzes the final step in starch degradation during plant germination, namely the hydrolysis of maltose to release glucose. This chapter outlines the use of a high-throughput screen of small molecules for inhibition of α-glucosidase using a colorimetric assay which involves the substrate p-nitrophenyl α-D-glucopyranoside. Identified inhibitors can be further utilized in phenotypic screens to probe the roles played by amylolytic enzymes. Furthermore this 96-well plate-based method can be adapted to assay exo-glycosidase activities involved in other aspects of carbohydrate metabolism.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 16 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 16 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 5 31%
Student > Ph. D. Student 3 19%
Student > Bachelor 2 13%
Professor 1 6%
Student > Doctoral Student 1 6%
Other 1 6%
Unknown 3 19%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 25%
Biochemistry, Genetics and Molecular Biology 2 13%
Agricultural and Biological Sciences 2 13%
Immunology and Microbiology 1 6%
Physics and Astronomy 1 6%
Other 2 13%
Unknown 4 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 3. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 05 June 2018.
All research outputs
#13,098,091
of 23,083,773 outputs
Outputs from Methods in molecular biology
#3,329
of 13,205 outputs
Outputs of similar age
#207,518
of 442,614 outputs
Outputs of similar age from Methods in molecular biology
#283
of 1,499 outputs
Altmetric has tracked 23,083,773 research outputs across all sources so far. This one is in the 42nd percentile – i.e., 42% of other outputs scored the same or lower than it.
So far Altmetric has tracked 13,205 research outputs from this source. They receive a mean Attention Score of 3.4. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 442,614 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.
We're also able to compare this research output to 1,499 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 79% of its contemporaries.