↓ Skip to main content

Microglia processes associate with diffusely injured axons following mild traumatic brain injury in the micro pig

Overview of attention for article published in Journal of Neuroinflammation, October 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)
  • Above-average Attention Score compared to outputs of the same age and source (51st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
86 Dimensions

Readers on

mendeley
97 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Microglia processes associate with diffusely injured axons following mild traumatic brain injury in the micro pig
Published in
Journal of Neuroinflammation, October 2015
DOI 10.1186/s12974-015-0405-6
Pubmed ID
Authors

Audrey D. Lafrenaye, Masaki Todani, Susan A. Walker, John T. Povlishock

Abstract

Mild traumatic brain injury (mTBI) is an all too common occurrence that exacts significant personal and societal costs. The pathophysiology of mTBI is complex, with reports routinely correlating diffuse axonal injury (DAI) with prolonged morbidity. Progressive chronic neuroinflammation has also recently been correlated to morbidity, however, the potential association between neuroinflammatory microglia and DAI is not well understood. The majority of studies exploring neuroinflammatory responses to TBI have focused on more chronic phases of injury involving phagocytosis associated with Wallerian change. Little, however, is known regarding the neuroinflammatory response seen acutely following diffuse mTBI and its potential relationship to early DAI. Additionally, while inflammation is drastically different in rodents compared to humans, pigs and humans share very similar inflammatory profiles and responses. In the current study, we employed a modified central fluid percussion model in micro pigs. Using this model of diffuse mTBI, paired with various immunohistological endpoints, we assessed the potential association between acute thalamic DAI and neuroinflammation 6 h following injury. Injured micro pigs displayed substantial axonal damage reflected in the presence of APP+ proximal axonal swellings, which were particularly prominent in the thalamus. In companion, the same thalamic sites displayed extensive neuroinflammation, which was observed using Iba-1 immunohistochemistry. The physical relationship between microglia and DAI, assessed via confocal 3D analysis, revealed a dramatic increase in the number of Iba-1+ microglial processes that contacted APP+ proximal axonal swellings compared to uninjured myelinated thalamic axons in sham animals. In aggregate, these studies reveal acute microglial process convergence on proximal axonal swellings undergoing DAI, an interaction not previously recognized in the literature. These findings transform our understanding of acute neuroinflammation following mTBI and may suggest its potential as a diagnostic and/or a therapeutic target.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 97 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
United States 1 1%
Unknown 95 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 25 26%
Researcher 14 14%
Student > Bachelor 12 12%
Student > Master 9 9%
Student > Doctoral Student 5 5%
Other 15 15%
Unknown 17 18%
Readers by discipline Count As %
Neuroscience 26 27%
Medicine and Dentistry 20 21%
Agricultural and Biological Sciences 10 10%
Nursing and Health Professions 4 4%
Psychology 3 3%
Other 11 11%
Unknown 23 24%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 18 October 2015.
All research outputs
#13,448,755
of 22,829,683 outputs
Outputs from Journal of Neuroinflammation
#1,447
of 2,635 outputs
Outputs of similar age
#131,647
of 277,991 outputs
Outputs of similar age from Journal of Neuroinflammation
#19
of 45 outputs
Altmetric has tracked 22,829,683 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 2,635 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 7.6. This one is in the 43rd percentile – i.e., 43% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 277,991 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 45 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.