↓ Skip to main content

Diagnostic tests for autism spectrum disorder (ASD) in preschool children

Overview of attention for article published in Cochrane database of systematic reviews, July 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (94th percentile)
  • High Attention Score compared to outputs of the same age and source (81st percentile)

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
165 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Diagnostic tests for autism spectrum disorder (ASD) in preschool children
Published in
Cochrane database of systematic reviews, July 2018
DOI 10.1002/14651858.cd009044.pub2
Pubmed ID
Authors

Melinda Randall, Kristine J Egberts, Aarti Samtani, Rob JPM Scholten, Lotty Hooft, Nuala Livingstone, Katy Sterling-Levis, Susan Woolfenden, Katrina Williams

Abstract

Autism spectrum disorder (ASD) is a behaviourally diagnosed condition. It is defined by impairments in social communication or the presence of restricted or repetitive behaviours, or both. Diagnosis is made according to existing classification systems. In recent years, especially following publication of the Diagnostic and Statistical Manual of Mental Disorders - Fifth Edition (DSM-5; APA 2013), children are given the diagnosis of ASD, rather than subclassifications of the spectrum such as autistic disorder, Asperger syndrome, or pervasive developmental disorder - not otherwise specified. Tests to diagnose ASD have been developed using parent or carer interview, child observation, or a combination of both. Primary objectives1. To identify which diagnostic tools, including updated versions, most accurately diagnose ASD in preschool children when compared with multi-disciplinary team clinical judgement.2. To identify how the best of the interview tools compare with CARS, then how CARS compares with ADOS.a. Which ASD diagnostic tool - among ADOS, ADI-R, CARS, DISCO, GARS, and 3di - has the best diagnostic test accuracy?b. Is the diagnostic test accuracy of any one test sufficient for that test to be suitable as a sole assessment tool for preschool children?c. Is there any combination of tests that, if offered in sequence, would provide suitable diagnostic test accuracy and enhance test efficiency?d. If data are available, does the combination of an interview tool with a structured observation test have better diagnostic test accuracy (i.e. fewer false-positives and fewer false-negatives) than either test alone?As only one interview tool was identified, we modified the first three aims to a single aim (Differences between protocol and review): This Review evaluated diagnostic tests in terms of sensitivity and specificity. Specificity is the most important factor for diagnosis; however, both sensitivity and specificity are of interest in this Review because there is an inherent trade-off between these two factors.Secondary objectives1. To determine whether any diagnostic test has greater diagnostic test accuracy for age-specific subgroups within the preschool age range. In July 2016, we searched CENTRAL, MEDLINE, Embase, PsycINFO, 10 other databases, and the reference lists of all included publications. Publications had to: 1. report diagnostic test accuracy for any of the following six included diagnostic tools: Autism Diagnostic Interview - Revised (ADI-R), Gilliam Autism Rating Scale (GARS), Diagnostic Interview for Social and Communication Disorder (DISCO), Developmental, Dimensional, and Diagnostic Interview (3di), Autism Diagnostic Observation Schedule - Generic (ADOS), and Childhood Autism Rating Scale (CARS); 2. include children of preschool age (under six years of age) suspected of having an ASD; and 3. have a multi-disciplinary assessment, or similar, as the reference standard.Eligible studies included cohort, cross-sectional, randomised test accuracy, and case-control studies. The target condition was ASD. Two review authors independently assessed all studies for inclusion and extracted data using standardised forms. A third review author settled disagreements. We assessed methodological quality using the QUADAS-2 instrument (Quality Assessment of Studies of Diagnostic Accuracy - Revised). We conducted separate univariate random-effects logistical regressions for sensitivity and specificity for CARS and ADI-R. We conducted meta-analyses of pairs of sensitivity and specificity using bivariate random-effects methods for ADOS. In this Review, we included 21 sets of analyses reporting different tools or cohorts of children from 13 publications, many with high risk of bias or potential conflicts of interest or a combination of both. Overall, the prevalence of ASD for children in the included analyses was 74%.For versions and modules of ADOS, there were 12 analyses with 1625 children. Sensitivity of ADOS ranged from 0.76 to 0.98, and specificity ranged from 0.20 to 1.00. The summary sensitivity was 0.94 (95% confidence interval (CI) 0.89 to 0.97), and the summary specificity was 0.80 (95% CI 0.68 to 0.88).For CARS, there were four analyses with 641 children. Sensitivity of CARS ranged from 0.66 to 0.89, and specificity ranged from 0.21 to 1.00. The summary sensitivity for CARS was 0.80 (95% CI 0.61 to 0.91), and the summary specificity was 0.88 (95% CI 0.64 to 0.96).For ADI-R, there were five analyses with 634 children. Sensitivity for ADI-R ranged from 0.19 to 0.75, and specificity ranged from 0.63 to 1.00. The summary sensitivity for the ADI-R was 0.52 (95% CI 0.32 to 0.71), and the summary specificity was 0.84 (95% CI 0.61 to 0.95).Studies that compared tests were few and too small to allow clear conclusions.In two studies that included analyses for both ADI-R and ADOS, tests scored similarly for sensitivity, but ADOS scored higher for specificity. In two studies that included analyses for ADI-R, ADOS, and CARS, ADOS had the highest sensitivity and CARS the highest specificity.In one study that explored individual and additive sensitivity and specificity of ADOS and ADI-R, combining the two tests did not increase the sensitivity nor the specificity of ADOS used alone.Performance for all tests was lower when we excluded studies at high risk of bias. We observed substantial variation in sensitivity and specificity of all tests, which was likely attributable to methodological differences and variations in the clinical characteristics of populations recruited.When we compared summary statistics for ADOS, CARS, and ADI-R, we found that ADOS was most sensitive. All tools performed similarly for specificity. In lower prevalence populations, the risk of falsely identifying children who do not have ASD would be higher.Now available are new versions of tools that require diagnostic test accuracy assessment, ideally in clinically relevant situations, with methods at low risk of bias and in children of varying abilities.

Twitter Demographics

The data shown below were collected from the profiles of 68 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 165 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 165 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 29 18%
Researcher 24 15%
Student > Bachelor 24 15%
Student > Ph. D. Student 16 10%
Student > Postgraduate 11 7%
Other 30 18%
Unknown 31 19%
Readers by discipline Count As %
Medicine and Dentistry 44 27%
Nursing and Health Professions 19 12%
Psychology 18 11%
Neuroscience 13 8%
Social Sciences 10 6%
Other 23 14%
Unknown 38 23%

Attention Score in Context

This research output has an Altmetric Attention Score of 43. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 13 December 2019.
All research outputs
#442,432
of 14,221,295 outputs
Outputs from Cochrane database of systematic reviews
#1,243
of 10,896 outputs
Outputs of similar age
#16,273
of 274,880 outputs
Outputs of similar age from Cochrane database of systematic reviews
#34
of 182 outputs
Altmetric has tracked 14,221,295 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 96th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,896 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.7. This one has done well, scoring higher than 88% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 274,880 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 94% of its contemporaries.
We're also able to compare this research output to 182 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 81% of its contemporaries.