↓ Skip to main content

Genome-wide association study of Gossypium arboreum resistance to reniform nematode

Overview of attention for article published in BMC Genomic Data, August 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (60th percentile)
  • Good Attention Score compared to outputs of the same age and source (75th percentile)

Mentioned by

twitter
6 X users

Citations

dimensions_citation
8 Dimensions

Readers on

mendeley
24 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Genome-wide association study of Gossypium arboreum resistance to reniform nematode
Published in
BMC Genomic Data, August 2018
DOI 10.1186/s12863-018-0662-3
Pubmed ID
Authors

Ruijuan Li, John E. Erpelding, Salliana R. Stetina

Abstract

Reniform nematode (Rotylenchulus reniformis) has emerged as one of the most destructive root pathogens of upland cotton (Gossypium hirsutum) in the United States. Management of R. reniformis has been hindered by the lack of resistant G. hirsutum cultivars; however, resistance has been frequently identified in germplasm accessions from the G. arboreum collection. To determine the genetic basis of reniform nematode resistance, a genome-wide association study (GWAS) was performed using 246 G. arboreum germplasm accessions that were genotyped with 7220 single nucleotide polymorphic (SNP) sequence markers generated from genotyping-by-sequencing. Fifteen SNPs representing 12 genomic loci distributed over eight chromosomes showed association with reniform nematode resistance. For 14 SNPs, major alleles were shown to be associated with resistance. From the 15 significantly associated SNPs, 146 genes containing or physically close to these loci were identified as putative reniform nematode resistance candidate genes. These genes are involved in a broad range of biological pathways, including plant innate immunity, transcriptional regulation, and redox reaction that may have a role in the expression of resistance. Eighteen of these genes corresponded to differentially expressed genes identified from G. hirsutum in response to reniform nematode infection. The identification of multiple genomic loci associated with reniform nematode resistance would indicate that the G. arboreum collection is a significant resource of novel resistance genes. The significantly associated markers identified from this GWAS can be used for the development of molecular tools for breeding improved reniform nematode resistant upland cotton with resistance introgressed from G. arboreum. Additionally, a greater understanding of the molecular mechanisms of reniform nematode resistance can be determined through genetic structure and functional analyses of candidate genes, which will aid in the pyramiding of multiple resistance genes.

X Demographics

X Demographics

The data shown below were collected from the profiles of 6 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 24 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 24 100%

Demographic breakdown

Readers by professional status Count As %
Researcher 6 25%
Student > Master 5 21%
Student > Ph. D. Student 2 8%
Student > Bachelor 1 4%
Student > Doctoral Student 1 4%
Other 1 4%
Unknown 8 33%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 50%
Biochemistry, Genetics and Molecular Biology 2 8%
Business, Management and Accounting 1 4%
Unknown 9 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 August 2018.
All research outputs
#8,478,408
of 25,385,509 outputs
Outputs from BMC Genomic Data
#312
of 1,204 outputs
Outputs of similar age
#134,766
of 341,622 outputs
Outputs of similar age from BMC Genomic Data
#7
of 29 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. This one has received more attention than most of these and is in the 66th percentile.
So far Altmetric has tracked 1,204 research outputs from this source. They receive a mean Attention Score of 4.3. This one has gotten more attention than average, scoring higher than 73% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,622 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.
We're also able to compare this research output to 29 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 75% of its contemporaries.