↓ Skip to main content

New insights into the genic and metabolic characteristics of induced pluripotent stem cells from polycystic ovary syndrome women

Overview of attention for article published in Stem Cell Research & Therapy, August 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (76th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

blogs
1 blog
twitter
2 tweeters

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
14 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
New insights into the genic and metabolic characteristics of induced pluripotent stem cells from polycystic ovary syndrome women
Published in
Stem Cell Research & Therapy, August 2018
DOI 10.1186/s13287-018-0950-x
Pubmed ID
Authors

Zheying Min, Qian Gao, Xiumei Zhen, Yong Fan, Tao Tan, Rong Li, Yue Zhao, Yang Yu

Abstract

Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder that affects female fertility. However, with the lack of a corresponding research model, the pathology mechanism of PCOS is poorly understood. Induced pluripotent stem cell (iPSC) technology has been recognized as means to generate patient-specific stem cells for disease modeling. The mRNA abundance of iPSCs was analyzed by RNA microarray and real-time polymerase chain reaction (RT-PCR). Karyotyping of iPSCs was performed with cytogenetic analysis. The mitochondrial respiration ability and glycolytic function were measured by the Seahorse Bioscience XF extracellular flux analyzer. The expression of iPSC-associated markers was identified by immunofluorescence and RT-PCR. The teratoma formation of iPSCs was studied using immunochemistry. A PCOS patient-derived iPSC model was established from somatic cells of PCOS patients. Through comprehensive transcriptional profiling analysis of the RNA microarray, PCOS patient-derived iPSCs showed metabolic abnormalities and mitochondrial dysfunction compared with non-PCOS patient-derived iPSCs in vitro. Specifically, a total of 2904 genes were differentially expressed between the two iPSC populations, of which 1416 genes were upregulated and 1488 genes were downregulated (fold change > 2, p < 0.01). Gene Ontology (GO) term enrichment results showed that upregulated genes were enriched in metabolic processes and mitochondrial activities which participated in the tricarboxylic acid (TCA) cycle, the respiratory electron transport chain (ETC), and glycogenolysis. On the other hand, the downregulated genes were related to cell communication, glucose transport, and uptake. The differentially expressed genes were verified by RT-PCR in PCOS patient-derived iPSCs and granulosa cells from PCOS patients. The PCOS patient-derived iPSCs demonstrated decreased mitochondrial respiration ability and glycolytic function (p < 0.05) but increased mitochondrial copy numbers and biogenesis (p < 0.05). Subsequently, some genes related to glucose metabolism were rescued by treating with metformin in PCOS patient-derived iPSCs. Meanwhile, the ATP production ability of mitochondria and the glycolysis ability of PCOS patient-derived iPSCs also partially returned to normal levels. However, metformin had little effect on mitochondrial maximal respiration ability and maximal glycolytic capacity. We measured differences in iPSCs from women with and without PCOS in gene transcription and mitochondrial respiratory function. PCOS patient-derived iPSCs showed abnormal expression of metabolic genes and mitochondrial dysfunction in vitro. The study provides a novel cell model in vitro for studying the clinical causes and molecular mechanisms of PCOS.

Twitter Demographics

The data shown below were collected from the profiles of 2 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 14 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 14 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 29%
Student > Bachelor 4 29%
Student > Master 3 21%
Student > Doctoral Student 1 7%
Researcher 1 7%
Other 0 0%
Unknown 1 7%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 7 50%
Medicine and Dentistry 3 21%
Agricultural and Biological Sciences 1 7%
Decision Sciences 1 7%
Pharmacology, Toxicology and Pharmaceutical Science 1 7%
Other 0 0%
Unknown 1 7%

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 19 August 2018.
All research outputs
#2,040,660
of 13,390,371 outputs
Outputs from Stem Cell Research & Therapy
#198
of 1,169 outputs
Outputs of similar age
#61,687
of 267,747 outputs
Outputs of similar age from Stem Cell Research & Therapy
#4
of 6 outputs
Altmetric has tracked 13,390,371 research outputs across all sources so far. Compared to these this one has done well and is in the 84th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 1,169 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.4. This one has done well, scoring higher than 82% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,747 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 76% of its contemporaries.
We're also able to compare this research output to 6 others from the same source and published within six weeks on either side of this one. This one has scored higher than 2 of them.