↓ Skip to main content

Significant neuronal soma volume deficit in the limbic system in subjects with 15q11.2-q13 duplications

Overview of attention for article published in Acta Neuropathologica Communications, October 2015
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (51st percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
45 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Significant neuronal soma volume deficit in the limbic system in subjects with 15q11.2-q13 duplications
Published in
Acta Neuropathologica Communications, October 2015
DOI 10.1186/s40478-015-0241-z
Pubmed ID
Authors

Jerzy Wegiel, Michael Flory, N. Carolyn Schanen, Edwin H. Cook, Krzysztof Nowicki, Izabela Kuchna, Humi Imaki, Shuang Yong Ma, Jarek Wegiel, Eric London, Manuel F. Casanova, Thomas Wisniewski, W. Ted Brown

Abstract

Autism is diagnosed in numerous genetic and genomic developmental disorders associated with an overlap in high-risk genes and loci that underlie intellectual disability (ID) and epilepsy. The aim of this stereological study of neuronal soma volume in 25 brain structures and their subdivisions in eight individuals 9 to 26 years of age who were diagnosed with chromosome 15q11.2-13.1 duplication syndrome [dup(15)], autism, ID and epilepsy; eight age-matched subjects diagnosed with autism of unknown etiology (idiopathic autism) and seven control individuals was to establish whether defects of neuronal soma growth are a common denominator of developmental pathology in idiopathic and syndromic autism and how genetic modifications alter the trajectory of neuronal soma growth in dup(15) autism. Application of the Nucleator software to estimate neuronal size revealed significant neuronal soma volume deficits in 11 of 25 structures and their subregions (44 %) in subjects diagnosed with dup(15) autism, including consistent neuronal soma volume deficits in the limbic system (sectors CA2, 3 and 4 in Ammon's horn, the second and third layers of the entorhinal cortex and in the amygdala), as well as in the thalamus, nucleus accumbens, external globus pallidus, and Ch3 nucleus in the magnocellular basal complex, and in the inferior olive in the brainstem. The second feature distinguishing dup(15) autism was persistent neuronal soma deficits in adolescents and young adults, whereas in idiopathic autism, neuronal volume deficit is most prominent in 4- to 8-year-old children but affects only a few brain regions in older subjects. This study demonstrates that alterations in the trajectory of neuronal growth throughout the lifespan are a core pathological features of idiopathic and syndromic autism. However, dup(15) causes persistent neuronal volume deficits in adolescence and adulthood, with prominent neuronal growth deficits in all major compartments of the limbic system. The more severe neuronal nuclear and cytoplasic volume deficits in syndromic autism found in this study and the more severe focal developmental defects in the limbic system in dup(15) previously reported in this cohort may contribute to the high prevalence of early onset intractable epilepsy and sudden unexpected death in epilepsy.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 45 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 45 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 12 27%
Researcher 6 13%
Student > Bachelor 4 9%
Student > Master 4 9%
Other 3 7%
Other 6 13%
Unknown 10 22%
Readers by discipline Count As %
Neuroscience 8 18%
Biochemistry, Genetics and Molecular Biology 7 16%
Psychology 6 13%
Medicine and Dentistry 5 11%
Agricultural and Biological Sciences 3 7%
Other 3 7%
Unknown 13 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 29 May 2016.
All research outputs
#13,449,421
of 22,830,751 outputs
Outputs from Acta Neuropathologica Communications
#1,017
of 1,375 outputs
Outputs of similar age
#132,181
of 279,229 outputs
Outputs of similar age from Acta Neuropathologica Communications
#18
of 22 outputs
Altmetric has tracked 22,830,751 research outputs across all sources so far. This one is in the 39th percentile – i.e., 39% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,375 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 12.9. This one is in the 24th percentile – i.e., 24% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,229 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 51% of its contemporaries.
We're also able to compare this research output to 22 others from the same source and published within six weeks on either side of this one. This one is in the 18th percentile – i.e., 18% of its contemporaries scored the same or lower than it.