↓ Skip to main content

21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes

Overview of attention for article published in Nature Communications, August 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (99th percentile)

Mentioned by

news
47 news outlets
blogs
9 blogs
policy
1 policy source
twitter
467 tweeters
facebook
2 Facebook pages
wikipedia
1 Wikipedia page
googleplus
1 Google+ user
reddit
5 Redditors

Citations

dimensions_citation
78 Dimensions

Readers on

mendeley
228 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes
Published in
Nature Communications, August 2018
DOI 10.1038/s41467-018-05738-9
Pubmed ID
Authors

Katey Walter Anthony, Thomas Schneider von Deimling, Ingmar Nitze, Steve Frolking, Abraham Emond, Ronald Daanen, Peter Anthony, Prajna Lindgren, Benjamin Jones, Guido Grosse

Abstract

Permafrost carbon feedback (PCF) modeling has focused on gradual thaw of near-surface permafrost leading to enhanced carbon dioxide and methane emissions that accelerate global climate warming. These state-of-the-art land models have yet to incorporate deeper, abrupt thaw in the PCF. Here we use model data, supported by field observations, radiocarbon dating, and remote sensing, to show that methane and carbon dioxide emissions from abrupt thaw beneath thermokarst lakes will more than double radiative forcing from circumpolar permafrost-soil carbon fluxes this century. Abrupt thaw lake emissions are similar under moderate and high representative concentration pathways (RCP4.5 and RCP8.5), but their relative contribution to the PCF is much larger under the moderate warming scenario. Abrupt thaw accelerates mobilization of deeply frozen, ancient carbon, increasing 14C-depleted permafrost soil carbon emissions by ~125-190% compared to gradual thaw alone. These findings demonstrate the need to incorporate abrupt thaw processes in earth system models for more comprehensive projection of the PCF this century.

Twitter Demographics

The data shown below were collected from the profiles of 467 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 228 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 228 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 62 27%
Researcher 35 15%
Student > Master 32 14%
Student > Bachelor 14 6%
Other 13 6%
Other 31 14%
Unknown 41 18%
Readers by discipline Count As %
Earth and Planetary Sciences 48 21%
Environmental Science 45 20%
Agricultural and Biological Sciences 21 9%
Engineering 9 4%
Chemistry 7 3%
Other 35 15%
Unknown 63 28%

Attention Score in Context

This research output has an Altmetric Attention Score of 695. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 17 November 2020.
All research outputs
#15,278
of 17,443,211 outputs
Outputs from Nature Communications
#255
of 34,342 outputs
Outputs of similar age
#443
of 283,987 outputs
Outputs of similar age from Nature Communications
#1
of 7 outputs
Altmetric has tracked 17,443,211 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 34,342 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 52.0. This one has done particularly well, scoring higher than 99% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 283,987 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 7 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them