↓ Skip to main content

Interventions to improve water quality for preventing diarrhoea

Overview of attention for article published in Cochrane database of systematic reviews, October 2015
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (97th percentile)
  • High Attention Score compared to outputs of the same age and source (91st percentile)

Mentioned by

news
5 news outlets
blogs
2 blogs
policy
1 policy source
twitter
26 tweeters
googleplus
1 Google+ user

Citations

dimensions_citation
88 Dimensions

Readers on

mendeley
367 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Interventions to improve water quality for preventing diarrhoea
Published in
Cochrane database of systematic reviews, October 2015
DOI 10.1002/14651858.cd004794.pub3
Pubmed ID
Authors

Thomas F Clasen, Kelly T Alexander, David Sinclair, Sophie Boisson, Rachel Peletz, Howard H Chang, Fiona Majorin, Sandy Cairncross

Abstract

Diarrhoea is a major cause of death and disease, especially among young children in low-income countries. In these settings, many infectious agents associated with diarrhoea are spread through water contaminated with faeces.In remote and low-income settings, source-based water quality improvement includes providing protected groundwater (springs, wells, and bore holes), or harvested rainwater as an alternative to surface sources (rivers and lakes). Point-of-use water quality improvement interventions include boiling, chlorination, flocculation, filtration, or solar disinfection, mainly conducted at home. To assess the effectiveness of interventions to improve water quality for preventing diarrhoea. We searched the Cochrane Infectious Diseases Group Specialized Register (11 November 2014), CENTRAL (the Cochrane Library, 7 November 2014), MEDLINE (1966 to 10 November 2014), EMBASE (1974 to 10 November 2014), and LILACS (1982 to 7 November 2014). We also handsearched relevant conference proceedings, contacted researchers and organizations working in the field, and checked references from identified studies through 11 November 2014. Randomized controlled trials (RCTs), quasi-RCTs, and controlled before-and-after studies (CBA) comparing interventions aimed at improving the microbiological quality of drinking water with no intervention in children and adults. Two review authors independently assessed trial quality and extracted data. We used meta-analyses to estimate pooled measures of effect, where appropriate, and investigated potential sources of heterogeneity using subgroup analyses. We assessed the quality of evidence using the GRADE approach. Forty-five cluster-RCTs, two quasi-RCTs, and eight CBA studies, including over 84,000 participants, met the inclusion criteria. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies) with unimproved water sources (30 studies) and unimproved or unclear sanitation (34 studies). The primary outcome in most studies was self-reported diarrhoea, which is at high risk of bias due to the lack of blinding in over 80% of the included studies. Source-based water quality improvementsThere is currently insufficient evidence to know if source-based improvements such as protected wells, communal tap stands, or chlorination/filtration of community sources consistently reduce diarrhoea (one cluster-RCT, five CBA studies, very low quality evidence). We found no studies evaluating reliable piped-in water supplies delivered to households. Point-of-use water quality interventionsOn average, distributing water disinfection products for use at the household level may reduce diarrhoea by around one quarter (Home chlorination products: RR 0.77, 95% CI 0.65 to 0.91; 14 trials, 30,746 participants, low quality evidence; flocculation and disinfection sachets: RR 0.69, 95% CI 0.58 to 0.82, four trials, 11,788 participants, moderate quality evidence). However, there was substantial heterogeneity in the size of the effect estimates between individual studies.Point-of-use filtration systems probably reduce diarrhoea by around a half (RR 0.48, 95% CI 0.38 to 0.59, 18 trials, 15,582 participants, moderate quality evidence). Important reductions in diarrhoea episodes were shown with ceramic filters, biosand systems and LifeStraw® filters; (Ceramic: RR 0.39, 95% CI 0.28 to 0.53; eight trials, 5763 participants, moderate quality evidence; Biosand: RR 0.47, 95% CI 0.39 to 0.57; four trials, 5504 participants, moderate quality evidence; LifeStraw®: RR 0.69, 95% CI 0.51 to 0.93; three trials, 3259 participants, low quality evidence). Plumbed in filters have only been evaluated in high-income settings (RR 0.81, 95% CI 0.71 to 0.94, three trials, 1056 participants, fixed effects model).In low-income settings, solar water disinfection (SODIS) by distribution of plastic bottles with instructions to leave filled bottles in direct sunlight for at least six hours before drinking probably reduces diarrhoea by around a third (RR 0.62, 95% CI 0.42 to 0.94; four trials, 3460 participants, moderate quality evidence).In subgroup analyses, larger effects were seen in trials with higher adherence, and trials that provided a safe storage container. In most cases, the reduction in diarrhoea shown in the studies was evident in settings with improved and unimproved water sources and sanitation. Interventions that address the microbial contamination of water at the point-of-use may be important interim measures to improve drinking water quality until homes can be reached with safe, reliable, piped-in water connections. The average estimates of effect for each individual point-of-use intervention generally show important effects. Comparisons between these estimates do not provide evidence of superiority of one intervention over another, as such comparisons are confounded by the study setting, design, and population.Further studies assessing the effects of household connections and chlorination at the point of delivery will help improve our knowledge base. As evidence suggests effectiveness improves with adherence, studies assessing programmatic approaches to optimising coverage and long-term utilization of these interventions among vulnerable populations could also help strategies to improve health outcomes.

Twitter Demographics

The data shown below were collected from the profiles of 26 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 367 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 <1%
United Kingdom 1 <1%
Brazil 1 <1%
South Africa 1 <1%
Unknown 362 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 89 24%
Student > Ph. D. Student 56 15%
Unspecified 51 14%
Student > Bachelor 47 13%
Researcher 47 13%
Other 77 21%
Readers by discipline Count As %
Medicine and Dentistry 82 22%
Unspecified 81 22%
Nursing and Health Professions 52 14%
Environmental Science 44 12%
Engineering 28 8%
Other 80 22%

Attention Score in Context

This research output has an Altmetric Attention Score of 70. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 November 2017.
All research outputs
#244,308
of 13,515,188 outputs
Outputs from Cochrane database of systematic reviews
#620
of 10,621 outputs
Outputs of similar age
#7,808
of 282,245 outputs
Outputs of similar age from Cochrane database of systematic reviews
#24
of 267 outputs
Altmetric has tracked 13,515,188 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,621 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.0. This one has done particularly well, scoring higher than 94% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 282,245 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 97% of its contemporaries.
We're also able to compare this research output to 267 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 91% of its contemporaries.