↓ Skip to main content

Pharmacological interventions for the acute management of hyperkalaemia in adults

Overview of attention for article published in Cochrane database of systematic reviews, October 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (89th percentile)
  • Above-average Attention Score compared to outputs of the same age and source (52nd percentile)

Mentioned by

twitter
24 tweeters
facebook
1 Facebook page

Citations

dimensions_citation
14 Dimensions

Readers on

mendeley
90 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Pharmacological interventions for the acute management of hyperkalaemia in adults
Published in
Cochrane database of systematic reviews, October 2015
DOI 10.1002/14651858.cd010344.pub2
Pubmed ID
Authors

Josh Batterink, Tara A Cessford, Robert AI Taylor

Abstract

Hyperkalaemia is a potentially life-threatening electrolyte disturbance which may lead to cardiac arrhythmias and death. Renal replacement therapy is known to be effective in treating hyperkalaemia, but safe and effective pharmacological interventions are needed to prevent dialysis or avoid the complications of hyperkalaemia until dialysis is performed. This review looked at the benefits and harms of pharmacological treatments used in the acute management of hyperkalaemia in adults. This review evaluated the therapies that reduce serum potassium as well as those that prevent complications of hyperkalaemia. We searched Cochrane Kidney and Transplant's Specialised Register to 18 August 2015 through contact with the Trials' Search Co-ordinator using search terms relevant to this review. All randomised controlled trials (RCTs) and quasi-RCTs looking at any pharmacological intervention for the acute management of hyperkalaemia in adults were included in this review. Non-standard study designs such as cross-over studies were also included. Eligible studies enrolled adults (aged 18 years and over) with hyperkalaemia, defined as serum potassium concentration ≥ 4.9 mmol/L, to receive pharmacological therapy to reduce serum potassium or to prevent arrhythmias. Patients with artificially induced hyperkalaemia were excluded from this review. All three authors screened titles and abstracts, and data extraction and risk of bias assessment was performed independently by at least two authors. Studies reported in non-English language journals were translated before assessment. Authors were contacted when information about results or study methodology was missing from the original publication. Although we planned to group all studies of a particular pharmacological therapy regardless of administration route or dose for analysis, we were unable to conduct meta-analyses because of the small numbers of studies evaluating any given treatment. For continuous data we reported mean difference (MD) and 95% confidence intervals (CI). We included seven studies (241 participants) in this review. Meta-analysis of these seven included studies was not possible due to heterogeneity of the treatments and because many of the studies did not provide sufficient statistical information with their results. Allocation and blinding methodology was poorly described in most studies.No study evaluated the efficacy of pharmacological interventions for preventing clinically relevant outcomes such as mortality and cardiac arrhythmias; however there is evidence that several commonly used therapies effectively reduce serum potassium levels. Salbutamol administered via either nebulizer or metered-dose inhaler (MDI) significantly reduced serum potassium compared with placebo. The peak effect of 10 mg nebulised salbutamol was seen at 120 minutes (MD -1.29 mmol/L, 95% CI -1.64 to -0.94) and at 90 minutes for 20 mg nebulised salbutamol (1 study: MD -1.18 mmol/L, 95% CI -1.54 to -0.82). One study reported 1.2 mg salbutamol via MDI 1.2 mg produced a significant decrease in serum potassium beginning at 10 minutes (MD -0.20 mmol/L, P < 0.05) and a maximal decrease at 60 minutes (MD -0.34 mmol/L, P < 0.0001). Intravenous (IV) and nebulised salbutamol produced comparable effects (2 studies). When compared to other interventions, salbutamol had similar effect to insulin-dextrose (2 studies) but was more effective than bicarbonate at 60 minutes (MD -0.46 mmol/L, 95% CI -0.82 to -0.10; 1 study). Insulin-dextrose was more effective than IV bicarbonate (1 study) and aminophylline (1 study). Insulin-dextrose, bicarbonate and aminophylline were not studied in any placebo-controlled studies. None of the included studies evaluated the effect of IV calcium or potassium binding resins in the treatment of hyperkalaemia. Evidence for the acute pharmacological management of hyperkalaemia is limited, with no clinical studies demonstrating a reduction in adverse patient outcomes. Of the studied agents, salbutamol via any route and IV insulin-dextrose appear to be most effective at reducing serum potassium. There is limited evidence to support the use of other interventions, such as IV sodium bicarbonate or aminophylline. The effectiveness of potassium binding resins and IV calcium salts has not been tested in RCTs and requires further study before firm recommendations for clinical practice can be made.

Twitter Demographics

The data shown below were collected from the profiles of 24 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 90 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Czechia 1 1%
Australia 1 1%
Unknown 88 98%

Demographic breakdown

Readers by professional status Count As %
Student > Bachelor 18 20%
Student > Master 13 14%
Student > Postgraduate 11 12%
Researcher 8 9%
Other 7 8%
Other 20 22%
Unknown 13 14%
Readers by discipline Count As %
Medicine and Dentistry 49 54%
Pharmacology, Toxicology and Pharmaceutical Science 8 9%
Nursing and Health Professions 6 7%
Biochemistry, Genetics and Molecular Biology 2 2%
Agricultural and Biological Sciences 2 2%
Other 5 6%
Unknown 18 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 15. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2019.
All research outputs
#1,163,469
of 14,367,928 outputs
Outputs from Cochrane database of systematic reviews
#3,374
of 10,948 outputs
Outputs of similar age
#30,206
of 284,933 outputs
Outputs of similar age from Cochrane database of systematic reviews
#120
of 260 outputs
Altmetric has tracked 14,367,928 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 91st percentile: it's in the top 10% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 10,948 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.8. This one has gotten more attention than average, scoring higher than 69% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,933 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 89% of its contemporaries.
We're also able to compare this research output to 260 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 52% of its contemporaries.