↓ Skip to main content

Evaluation of sample preparation methods for mass spectrometry-based proteomic analysis of barley leaves

Overview of attention for article published in Plant Methods, August 2018
Altmetric Badge

Mentioned by

twitter
3 X users

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
116 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Evaluation of sample preparation methods for mass spectrometry-based proteomic analysis of barley leaves
Published in
Plant Methods, August 2018
DOI 10.1186/s13007-018-0341-4
Pubmed ID
Authors

Wei-Qing Wang, Ole Nørregaard Jensen, Ian Max Møller, Kim H. Hebelstrup, Adelina Rogowska-Wrzesinska

Abstract

Sample preparation is a critical process for proteomic studies. Many efficient and reproducible sample preparation methods have been developed for mass spectrometry-based proteomic analysis of human and animal tissues or cells, but no attempt has been made to evaluate these protocols for plants. We here present an LC-MS/MS-based proteomics study of barley leaf aimed at optimization of methods to achieve efficient and unbiased trypsin digestion of proteins prior to LC-MS/MS based sequencing and quantification of peptides. We evaluated two spin filter-aided sample preparation protocols using either sodium dodecyl-sulphate or sodium deoxycholate (SDC), and three in-solution digestion (ISD) protocols using SDC or trichloroacetic acid/acetone precipitation. The proteomics workflow identified and quantified up to 1800 barley proteins based on sequencing of up to 6900 peptides per sample. The two spin filter-based protocols provided a 12-38% higher efficiency than the ISD protocols, including more proteins of low abundance. Among the ISD protocols, a simple one-step reduction and S-alkylation method (OP-ISD) was the most efficient for barley leaf sample preparation; it identified and quantified 1500 proteins and displayed higher peptide-to-protein inference ratio and higher average amino acid sequence coverage of proteins. The two spin filter-aided sample preparation protocols are compatible with TMT labelling for quantitative proteomics studies. They exhibited complementary performance as about 30% of the proteins were identified by either one or the other protocol, but also demonstrated a positive bias for membrane proteins when using SDC as detergent. We provide detailed protocols for efficient plant protein sample preparation for LC-MS/MS-based proteomics studies. Spin filter-based protocols are the most efficient for the preparation of leaf samples for MS-based proteomics. However, a simple protocol provides comparable results although with different peptide digestion profile.

X Demographics

X Demographics

The data shown below were collected from the profiles of 3 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 116 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 116 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 23 20%
Student > Master 19 16%
Student > Bachelor 17 15%
Researcher 12 10%
Student > Doctoral Student 7 6%
Other 9 8%
Unknown 29 25%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 29 25%
Agricultural and Biological Sciences 19 16%
Chemistry 11 9%
Medicine and Dentistry 6 5%
Pharmacology, Toxicology and Pharmaceutical Science 3 3%
Other 11 9%
Unknown 37 32%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 October 2018.
All research outputs
#15,543,612
of 23,100,534 outputs
Outputs from Plant Methods
#837
of 1,094 outputs
Outputs of similar age
#211,563
of 334,301 outputs
Outputs of similar age from Plant Methods
#23
of 30 outputs
Altmetric has tracked 23,100,534 research outputs across all sources so far. This one is in the 22nd percentile – i.e., 22% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,094 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.4. This one is in the 16th percentile – i.e., 16% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 334,301 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 28th percentile – i.e., 28% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 30 others from the same source and published within six weeks on either side of this one. This one is in the 23rd percentile – i.e., 23% of its contemporaries scored the same or lower than it.