↓ Skip to main content

Acceleration of electrons in the plasma wakefield of a proton bunch

Overview of attention for article published in Nature, August 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (99th percentile)
  • High Attention Score compared to outputs of the same age and source (83rd percentile)

Mentioned by

news
33 news outlets
blogs
8 blogs
twitter
36 X users
facebook
4 Facebook pages
wikipedia
4 Wikipedia pages
googleplus
1 Google+ user
reddit
1 Redditor
video
1 YouTube creator

Citations

dimensions_citation
186 Dimensions

Readers on

mendeley
159 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Acceleration of electrons in the plasma wakefield of a proton bunch
Published in
Nature, August 2018
DOI 10.1038/s41586-018-0485-4
Pubmed ID
Authors

E. Adli, A. Ahuja, O. Apsimon, R. Apsimon, A.-M. Bachmann, D. Barrientos, F. Batsch, J. Bauche, V. K. Berglyd Olsen, M. Bernardini, T. Bohl, C. Bracco, F. Braunmüller, G. Burt, B. Buttenschön, A. Caldwell, M. Cascella, J. Chappell, E. Chevallay, M. Chung, D. Cooke, H. Damerau, L. Deacon, L. H. Deubner, A. Dexter, S. Doebert, J. Farmer, V. N. Fedosseev, R. Fiorito, R. A. Fonseca, F. Friebel, L. Garolfi, S. Gessner, I. Gorgisyan, A. A. Gorn, E. Granados, O. Grulke, E. Gschwendtner, J. Hansen, A. Helm, J. R. Henderson, M. Hüther, M. Ibison, L. Jensen, S. Jolly, F. Keeble, S.-Y. Kim, F. Kraus, Y. Li, S. Liu, N. Lopes, K. V. Lotov, L. Maricalva Brun, M. Martyanov, S. Mazzoni, D. Medina Godoy, V. A. Minakov, J. Mitchell, J. C. Molendijk, J. T. Moody, M. Moreira, P. Muggli, E. Öz, C. Pasquino, A. Pardons, F. Peña Asmus, K. Pepitone, A. Perera, A. Petrenko, S. Pitman, A. Pukhov, S. Rey, K. Rieger, H. Ruhl, J. S. Schmidt, I. A. Shalimova, P. Sherwood, L. O. Silva, L. Soby, A. P. Sosedkin, R. Speroni, R. I. Spitsyn, P. V. Tuev, M. Turner, F. Velotti, L. Verra, V. A. Verzilov, J. Vieira, C. P. Welsch, B. Williamson, M. Wing, B. Woolley, G. Xia

Abstract

High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration1-5, in which the electrons in a plasma are excited, leading to strong electric fields, is one such promising novel acceleration technique. Pioneering experiments have shown that an intense laser pulse6-9 or electron bunch10,11 traversing a plasma drives electric fields of tens of gigavolts per metre and above. These values are well beyond those achieved in conventional radio-frequency accelerators, which are limited to about 0.1 gigavolt per metre. A limitation of laser pulses and electron bunches is their low stored energy, which motivates the use of multiple stages to reach very high energies5,12. The use of proton bunches is compelling, as they have the potential to drive wakefields and accelerate electrons to high energy in a single accelerating stage13. The long proton bunches currently available can be used, as they undergo a process called self-modulation14-16, a particle-plasma interaction which longitudinally splits the bunch into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses intense bunches of protons, each of energy 400 gigaelectronvolts (GeV), with a total bunch energy of 19 kilojoules, to drive a wakefield in a 10-metre-long plasma. Bunches of electrons are injected into the wakefield formed by the proton microbunches. Here we present measurements of electrons accelerated up to 2 GeV at the AWAKE experiment. This constitutes the first demonstration of proton-driven plasma wakefield acceleration. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage20 means that the results shown here are a significant step towards the development of future high-energy particle accelerators21,22.

X Demographics

X Demographics

The data shown below were collected from the profiles of 36 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 159 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 159 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 44 28%
Researcher 32 20%
Student > Master 12 8%
Student > Doctoral Student 9 6%
Professor 7 4%
Other 18 11%
Unknown 37 23%
Readers by discipline Count As %
Physics and Astronomy 90 57%
Engineering 5 3%
Chemistry 5 3%
Materials Science 3 2%
Earth and Planetary Sciences 2 1%
Other 13 8%
Unknown 41 26%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 325. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 August 2023.
All research outputs
#104,983
of 25,732,188 outputs
Outputs from Nature
#7,179
of 98,606 outputs
Outputs of similar age
#2,090
of 345,510 outputs
Outputs of similar age from Nature
#161
of 997 outputs
Altmetric has tracked 25,732,188 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 99th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 98,606 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 102.6. This one has done particularly well, scoring higher than 92% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 345,510 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 99% of its contemporaries.
We're also able to compare this research output to 997 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 83% of its contemporaries.