↓ Skip to main content

Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration

Overview of attention for article published in Arthritis Research & Therapy, November 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (83rd percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

news
1 news outlet
patent
1 patent

Citations

dimensions_citation
171 Dimensions

Readers on

mendeley
78 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Excessive reactive oxygen species are therapeutic targets for intervertebral disc degeneration
Published in
Arthritis Research & Therapy, November 2015
DOI 10.1186/s13075-015-0834-8
Pubmed ID
Authors

Satoshi Suzuki, Nobuyuki Fujita, Naobumi Hosogane, Kota Watanabe, Ken Ishii, Yoshiaki Toyama, Keiyo Takubo, Keisuke Horiuchi, Takeshi Miyamoto, Masaya Nakamura, Morio Matsumoto

Abstract

Oxidative stress has been reported to be involved in numerous human diseases, including musculoskeletal disorders such as osteoarthritis. However, the interaction between intervertebral disc (IVD) degeneration and oxidative stress is not well understood. The purpose of the present study was to elucidate the contribution of oxidative stress to IVD degeneration and the efficacy of antioxidant treatment for degenerative discs. The expression level of an oxidative stress marker, nitrotyrosine, was assessed by immunohistochemistry and Western blotting. For evaluating intracellular reactive oxygen species (ROS) levels and oxidative stress in rat annulus fibrosus (AF) cells, flow cytometry and luciferase assay with an OKD48 construct were performed. The grade of IVD degeneration was assessed by magnetic resonance imaging and histological analysis. A high frequency of nitrotyrosine-positive cells was observed in rat and human degenerative discs. mRNA expression of catabolic factors such as tumor necrosis factor-alpha (TNF-alpha), matrix metalloprotease-3 (MMP-3), and cyclooxygenase-2 (COX-2) was significantly induced by treatment with H2O2 or buthionine sulfoximine, whereas that of aggrecan, an important chondrogenic proteoglycan, was reduced in a dose-dependent manner. Treatment with mitogen-activated protein kinase (MAPK) inhibitors blocked the inductive effect of excessive ROS on COX-2 mRNA expression. Western blotting confirmed the phosphorylation of MAPKs in H2O2 and BSO-treated AF cells. Conversely, we showed that TNF-α induced oxidative stress with increased intracellular ROS levels in AF cells. Treatment with the antioxidant N-acetyl cysteine (NAC) abrogated the catabolic effect of excessive ROS and TNF-alpha in vitro. Finally, we showed that oral administration of NAC prevented IVD degeneration in rat degenerative model. A positive feedback loop was formed between excessive ROS and TNF-alpha in AF cells. Thus, oxidative stress contributes to the progression of IVD degeneration and NAC can be a therapeutic option for IVD degeneration.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 78 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 2 3%
Indonesia 1 1%
United Kingdom 1 1%
Japan 1 1%
Unknown 73 94%

Demographic breakdown

Readers by professional status Count As %
Student > Master 10 13%
Researcher 9 12%
Student > Ph. D. Student 9 12%
Student > Bachelor 8 10%
Other 7 9%
Other 8 10%
Unknown 27 35%
Readers by discipline Count As %
Medicine and Dentistry 14 18%
Biochemistry, Genetics and Molecular Biology 9 12%
Agricultural and Biological Sciences 7 9%
Engineering 4 5%
Chemistry 3 4%
Other 11 14%
Unknown 30 38%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 10. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 August 2022.
All research outputs
#3,415,510
of 25,374,917 outputs
Outputs from Arthritis Research & Therapy
#736
of 3,380 outputs
Outputs of similar age
#46,564
of 296,932 outputs
Outputs of similar age from Arthritis Research & Therapy
#36
of 96 outputs
Altmetric has tracked 25,374,917 research outputs across all sources so far. Compared to these this one has done well and is in the 86th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,380 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.2. This one has done well, scoring higher than 76% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 296,932 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 83% of its contemporaries.
We're also able to compare this research output to 96 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.