↓ Skip to main content

Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PI3K/Akt/FoxO3a pathway

Overview of attention for article published in Journal of Translational Medicine, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
36 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Cyclic helix B peptide inhibits ischemia reperfusion-induced renal fibrosis via the PI3K/Akt/FoxO3a pathway
Published in
Journal of Translational Medicine, November 2015
DOI 10.1186/s12967-015-0699-2
Pubmed ID
Authors

Cheng Yang, Ye Cao, Yi Zhang, Long Li, Ming Xu, Yaqiu Long, Ruiming Rong, Tongyu Zhu

Abstract

Renal fibrosis is a main cause of end-stage renal disease. Clinically, there is no beneficial treatment that can effectively reverse the progressive loss of renal function. We recently synthesized a novel proteolysis-resistant cyclic helix B peptide (CHBP) that exhibits promising renoprotective effects. In this study, we evaluated the effect of CHBP on renal fibrosis in an in vivo ischemia reperfusion injury (IRI) model and in vitro TGF-β-stimulated tubular epithelial cells (TCMK-1 and HK-2) model. In the IRI in vivo model, mice were randomly divided into sham (sham operation), IR and IR + CHBP groups (n = 6). CHBP (8 nmol/kg) was administered intraperitoneally at the onset of reperfusion, and renal fibrosis was evaluated at 12 weeks post-reperfusion. Our results showed that CHBP markedly attenuated the IRI-induced deposition of collagen I and vimentin. In the in vitro model, CHBP reversed the TGF-β-induced down-regulation of E-cadherin and up-regulation of α-SMA and vimentin. Furthermore, CHBP inhibited the phosphorylation of Akt and Forkhead box O 3a (FoxO3a), whose anti-fibrotic effect could be reversed by the 3-phosphoinositide-dependent kinase-1 (PI3K) inhibitor wortmannin as well as FoxO3a siRNA. These findings demonstrate that CHBP attenuates renal fibrosis and the epithelial-mesenchymal transition of tubular cells, possibly through suppression of the PI3K/Akt pathway and thereby the inhibition FoxO3a activity.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Lecturer 1 9%
Student > Ph. D. Student 1 9%
Student > Master 1 9%
Researcher 1 9%
Student > Postgraduate 1 9%
Other 0 0%
Unknown 6 55%
Readers by discipline Count As %
Pharmacology, Toxicology and Pharmaceutical Science 4 36%
Chemistry 1 9%
Unknown 6 55%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2015.
All research outputs
#20,707,815
of 23,308,124 outputs
Outputs from Journal of Translational Medicine
#3,408
of 4,114 outputs
Outputs of similar age
#238,293
of 284,023 outputs
Outputs of similar age from Journal of Translational Medicine
#68
of 70 outputs
Altmetric has tracked 23,308,124 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,114 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 10.6. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 284,023 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 70 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.