↓ Skip to main content

Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping

Overview of attention for article published in Journal of NeuroEngineering and Rehabilitation, September 2018
Altmetric Badge

About this Attention Score

  • Above-average Attention Score compared to outputs of the same age (60th percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 X users

Citations

dimensions_citation
48 Dimensions

Readers on

mendeley
153 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping
Published in
Journal of NeuroEngineering and Rehabilitation, September 2018
DOI 10.1186/s12984-018-0422-7
Pubmed ID
Authors

Marko Markovic, Meike A. Schweisfurth, Leonard F. Engels, Dario Farina, Strahinja Dosen

Abstract

Sensory feedback is critical for grasping in able-bodied subjects. Consequently, closing the loop in upper-limb prosthetics by providing artificial sensory feedback to the amputee is expected to improve the prosthesis utility. Nevertheless, even though amputees rate the prospect of sensory feedback high, its benefits in daily life are still very much debated. We argue that in order to measure the potential functional benefit of artificial sensory feedback, the baseline open-loop performance needs to be established. The myoelectric control of naïve able-bodied subjects was evaluated during modulation of electromyographic signals (EMG task), and grasping with a prosthesis (Prosthesis task). The subjects needed to activate the wrist flexor muscles and close the prosthesis to reach a randomly selected target level (routine grasping). To assess the baseline performance, the tasks were performed with a different extent of implicit feedback (proprioception, prosthesis motion and sound). Finally, the prosthesis task was repeated with explicit visual force feedback. The subjects' ability to scale the prosthesis command/force was assessed by testing for a statistically significant increase in the median of the generated commands/forces between neighboring levels. The quality of control was evaluated by computing the median absolute error (MAE) with respect to the target. The subjects could successfully scale their motor commands and generated prosthesis forces across target levels in all tasks, even with the least amount of implicit feedback (only muscle proprioception, EMG task). In addition, the deviation of the generated commands/forces from the target levels decreased with additional feedback. However, the increase in implicit feedback, from proprioception to prosthesis motion and sound, seemed to have a more substantial effect than the final introduction of explicit feedback. Explicit feedback improved the performance mainly at the higher target-force levels. The study establishes the baseline performance of myoelectric control and prosthesis grasping force. The results demonstrate that even without additional feedback, naïve subjects can effectively modulate force with good accuracy with respect to that achieved when increasing the amount of feedback information.

X Demographics

X Demographics

The data shown below were collected from the profiles of 5 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 153 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 153 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 33 22%
Student > Master 24 16%
Researcher 20 13%
Student > Bachelor 14 9%
Student > Doctoral Student 5 3%
Other 13 8%
Unknown 44 29%
Readers by discipline Count As %
Engineering 63 41%
Medicine and Dentistry 13 8%
Neuroscience 9 6%
Computer Science 7 5%
Nursing and Health Professions 3 2%
Other 8 5%
Unknown 50 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 August 2019.
All research outputs
#7,518,143
of 23,102,082 outputs
Outputs from Journal of NeuroEngineering and Rehabilitation
#489
of 1,294 outputs
Outputs of similar age
#130,889
of 335,675 outputs
Outputs of similar age from Journal of NeuroEngineering and Rehabilitation
#12
of 26 outputs
Altmetric has tracked 23,102,082 research outputs across all sources so far. This one has received more attention than most of these and is in the 67th percentile.
So far Altmetric has tracked 1,294 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.9. This one has gotten more attention than average, scoring higher than 61% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 335,675 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 60% of its contemporaries.
We're also able to compare this research output to 26 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.