↓ Skip to main content

Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells

Overview of attention for article published in Skeletal Muscle, November 2015
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (78th percentile)
  • Good Attention Score compared to outputs of the same age and source (69th percentile)

Mentioned by

twitter
9 X users
facebook
1 Facebook page
googleplus
1 Google+ user
reddit
1 Redditor

Citations

dimensions_citation
28 Dimensions

Readers on

mendeley
71 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Dp412e: a novel human embryonic dystrophin isoform induced by BMP4 in early differentiated cells
Published in
Skeletal Muscle, November 2015
DOI 10.1186/s13395-015-0062-6
Pubmed ID
Authors

Emmanuelle Massouridès, Jérôme Polentes, Philippe-Emmanuel Mangeot, Virginie Mournetas, Juliette Nectoux, Nathalie Deburgrave, Patrick Nusbaum, France Leturcq, Linda Popplewell, George Dickson, Nicolas Wein, Kevin M. Flanigan, Marc Peschanski, Jamel Chelly, Christian Pinset

Abstract

Duchenne muscular dystrophy (DMD) is a devastating X-linked recessive genetic myopathy. DMD physiopathology is still not fully understood and a prenatal onset is suspected but difficult to address. The bone morphogenetic protein 4 (BMP4) is a critical signaling molecule involved in mesoderm commitment. Human induced pluripotent stem cells (hiPSCs) from DMD and healthy individuals and human embryonic stem cells (hESCs) treated with BMP4 allowed us to model the early steps of myogenesis in normal and DMD contexts. Unexpectedly, 72h following BMP4 treatment, a new long DMD transcript was detected in all tested hiPSCs and hESCs, at levels similar to that found in adult skeletal muscle. This novel transcript named "Dp412e" has a specific untranslated first exon which is conserved only in a sub-group of anthropoids including human. The corresponding novel dystrophin protein of 412-kiloDalton (kDa), characterized by an N-terminal-truncated actin-binding domain, was detected in normal BMP4-treated hiPSCs/hESCs and in embryoid bodies. Finally, using a phosphorodiamidate morpholino oligomer (PMO) targeting the DMD exon 53, we demonstrated the feasibility of exon skipping validation with this BMP4-inducible hiPSCs model. In this study, the use of hiPSCs to analyze early phases of human development in normal and DMD contexts has led to the discovery of an embryonic 412 kDa dystrophin isoform. Deciphering the regulation process(es) and the function(s) associated to this new isoform can contribute to a better understanding of the DMD physiopathology and potential developmental defects. Moreover, the simple and robust BMP4-inducible model highlighted here, providing large amount of a long DMD transcript and the corresponding protein in only 3 days, is already well-adapted to high-throughput and high-content screening approaches. Therefore, availability of this powerful cell platform can accelerate the development, validation and improvement of DMD genetic therapies.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 71 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 1%
Australia 1 1%
Unknown 69 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 18 25%
Student > Ph. D. Student 11 15%
Other 9 13%
Student > Bachelor 8 11%
Student > Master 5 7%
Other 8 11%
Unknown 12 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 21 30%
Agricultural and Biological Sciences 14 20%
Medicine and Dentistry 12 17%
Pharmacology, Toxicology and Pharmaceutical Science 3 4%
Chemistry 2 3%
Other 4 6%
Unknown 15 21%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 7. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 November 2015.
All research outputs
#4,180,671
of 22,833,393 outputs
Outputs from Skeletal Muscle
#119
of 362 outputs
Outputs of similar age
#56,995
of 281,503 outputs
Outputs of similar age from Skeletal Muscle
#4
of 13 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. Compared to these this one has done well and is in the 80th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 362 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 8.2. This one has gotten more attention than average, scoring higher than 66% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 281,503 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 78% of its contemporaries.
We're also able to compare this research output to 13 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 69% of its contemporaries.