↓ Skip to main content

Non-coding RNAs in Complex Diseases

Overview of attention for book
Attention for Chapter 8: Computationally Modeling ncRNA-ncRNA Crosstalk
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Above-average Attention Score compared to outputs of the same age and source (58th percentile)

Mentioned by

twitter
2 X users

Citations

dimensions_citation
7 Dimensions

Readers on

mendeley
4 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Computationally Modeling ncRNA-ncRNA Crosstalk
Chapter number 8
Book title
Non-coding RNAs in Complex Diseases
Published in
Advances in experimental medicine and biology, September 2018
DOI 10.1007/978-981-13-0719-5_8
Pubmed ID
Book ISBNs
978-9-81-130718-8, 978-9-81-130719-5
Authors

Juan Xu, Jing Bai, Jun Xiao, Xu, Juan, Bai, Jing, Xiao, Jun

Abstract

Our understanding of complex gene regulatory networks have been improved by the discovery of ncRNA-ncRNA crosstalk in normal and disease-specific physiological conditions. Previous studies have proposed numerous approaches for constructing ncRNA-ncRNA networks via ncRNA-mRNA regulation, functional information, or phenomics alone, or by combining heterogeneous data. Furthermore, it has been shown that ncRNA-ncRNA crosstalk can be rewired in different tissues or specific diseases. Therefore, it is necessary to integrate transcriptome data to construct context-specific ncRNA-ncRNA networks. In this chapter, we elucidated the commonly used ncRNA-ncRNA network modeling methods, and highlighted the need to integrate heterogeneous multi-mics data. Finally, we suggest future directions for studies of ncRNAs crosstalk. This comprehensive description and discussion elucidated in this chapter will provide constructive insights into ncRNA-ncRNA crosstalk.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 4 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 4 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 1 25%
Professor > Associate Professor 1 25%
Student > Bachelor 1 25%
Unknown 1 25%
Readers by discipline Count As %
Mathematics 1 25%
Agricultural and Biological Sciences 1 25%
Neuroscience 1 25%
Unknown 1 25%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 08 September 2018.
All research outputs
#14,424,488
of 23,103,436 outputs
Outputs from Advances in experimental medicine and biology
#2,117
of 4,976 outputs
Outputs of similar age
#188,656
of 336,158 outputs
Outputs of similar age from Advances in experimental medicine and biology
#29
of 81 outputs
Altmetric has tracked 23,103,436 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,976 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.2. This one has gotten more attention than average, scoring higher than 54% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 336,158 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 40th percentile – i.e., 40% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 81 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 58% of its contemporaries.