↓ Skip to main content

Extensive variation between tissues in allele specific expression in an outbred mammal

Overview of attention for article published in BMC Genomics, November 2015
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (70th percentile)
  • Good Attention Score compared to outputs of the same age and source (66th percentile)

Mentioned by

twitter
4 X users
facebook
1 Facebook page
f1000
1 research highlight platform

Citations

dimensions_citation
70 Dimensions

Readers on

mendeley
70 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Extensive variation between tissues in allele specific expression in an outbred mammal
Published in
BMC Genomics, November 2015
DOI 10.1186/s12864-015-2174-0
Pubmed ID
Authors

Amanda J. Chamberlain, Christy J. Vander Jagt, Benjamin J. Hayes, Majid Khansefid, Leah C. Marett, Catriona A. Millen, Thuy T. T. Nguyen, Michael E. Goddard

Abstract

Allele specific gene expression (ASE), with the paternal allele more expressed than the maternal allele or vice versa, appears to be a common phenomenon in humans and mice. In other species the extent of ASE is unknown, and even in humans and mice there are several outstanding questions. These include; to what extent is ASE tissue specific? how often does the direction of allele expression imbalance reverse between tissues? how often is only one of the two alleles expressed? is there a genome wide bias towards expression of the paternal or maternal allele; and finally do genes that are nearby on a chromosome share the same direction of ASE? Here we use gene expression data (RNASeq) from 18 tissues from a single cow to investigate each of these questions in turn, and then validate some of these findings in two tissues from 20 cows. Between 40 and 100 million sequence reads were generated per tissue across three replicate samples for each of the eighteen tissues from the single cow (the discovery dataset). A bovine gene expression atlas was created (the first from RNASeq data), and differentially expressed genes in each tissue were identified. To analyse ASE, we had access to unambiguously phased genotypes for all heterozygous variants in the cow's whole genome sequence, where these variants were homozygous in the whole genome sequence of her sire, and as a result we were able to map reads to parental genomes, to determine SNP and genes showing ASE in each tissue. In total 25,251 heterozygous SNP within 7985 genes were tested for ASE in at least one tissue. ASE was pervasive, 89 % of genes tested had significant ASE in at least one tissue. This large proportion of genes displaying ASE was confirmed in the two tissues in a validation dataset. For individual tissues the proportion of genes showing significant ASE varied from as low as 8-16 % of those tested in thymus to as high as 71-82 % of those tested in lung. There were a number of cases where the direction of allele expression imbalance reversed between tissues. For example the gene SPTY2D1 showed almost complete paternal allele expression in kidney and thymus, and almost complete maternal allele expression in the brain caudal lobe and brain cerebellum. Mono allelic expression (MAE) was common, with 1349 of 4856 genes (28 %) tested with more than one heterozygous SNP showing MAE. Across all tissues, 54.17 % of all genes with ASE favoured the paternal allele. Genes that are closely linked on the chromosome were more likely to show higher expression of the same allele (paternal or maternal) than expected by chance. We identified several long runs of neighbouring genes that showed either paternal or maternal ASE, one example was five adjacent genes (GIMAP8, GIMAP7 copy1, GIMAP4, GIMAP7 copy 2 and GIMAP5) that showed almost exclusive paternal expression in brain caudal lobe. Investigating the extent of ASE across 18 bovine tissues in one cow and two tissues in 20 cows demonstrated 1) ASE is pervasive in cattle, 2) the ASE is often MAE but ranges from MAE to slight overexpression of the major allele, 3) the ASE is most often tissue specific and that more than half the time displays divergent allele specific expression patterns across tissues, 4) across all genes there is a slight bias towards expression of the paternal allele and 5) genes expressing the same parental allele are clustered together more than expected by chance, and there are several runs of large numbers of genes expressing the same parental allele.

X Demographics

X Demographics

The data shown below were collected from the profiles of 4 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 70 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 1 1%
New Zealand 1 1%
United States 1 1%
Unknown 67 96%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 14 20%
Researcher 11 16%
Student > Master 11 16%
Student > Doctoral Student 4 6%
Student > Bachelor 3 4%
Other 8 11%
Unknown 19 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 26 37%
Biochemistry, Genetics and Molecular Biology 10 14%
Veterinary Science and Veterinary Medicine 2 3%
Mathematics 2 3%
Neuroscience 2 3%
Other 5 7%
Unknown 23 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 09 October 2016.
All research outputs
#6,963,366
of 22,833,393 outputs
Outputs from BMC Genomics
#3,219
of 10,655 outputs
Outputs of similar age
#108,956
of 386,225 outputs
Outputs of similar age from BMC Genomics
#118
of 390 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one has received more attention than most of these and is in the 68th percentile.
So far Altmetric has tracked 10,655 research outputs from this source. They receive a mean Attention Score of 4.7. This one has gotten more attention than average, scoring higher than 68% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 386,225 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 70% of its contemporaries.
We're also able to compare this research output to 390 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 66% of its contemporaries.