↓ Skip to main content

Granulocyte colony-stimulating factor exacerbates hematopoietic stem cell injury after irradiation

Overview of attention for article published in Cell & Bioscience, November 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
32 Dimensions

Readers on

mendeley
31 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Granulocyte colony-stimulating factor exacerbates hematopoietic stem cell injury after irradiation
Published in
Cell & Bioscience, November 2015
DOI 10.1186/s13578-015-0057-3
Pubmed ID
Authors

Chengcheng Li, Lu Lu, Junling Zhang, Song Huang, Yonghua Xing, Mingfeng Zhao, Daohong Zhou, Deguan Li, Aimin Meng

Abstract

Exposure to a moderate to high dose of ionizing radiation (IR) not only causes acute radiation syndrome but also induces long-term (LT) bone marrow (BM) injury. The latter effect of IR is primarily attributed to the induction of hematopoietic stem cell (HSC) senescence. Granulocyte colony-stimulating factor (G-CSF) is the only treatment recommended to be given to radiation victims soon after IR. However, clinical studies have shown that G-CSF used to treat the leukopenia induced by radiotherapy or chemotherapy in patients can cause sustained low white blood cell counts in peripheral blood. It has been suggested that this adverse effect is caused by HSC and hematopoietic progenitor cell (HPC) proliferation and differentiation stimulated by G-CSF, which impairs HSC self-renewal and may exhaust the BM capacity to exacerbate IR-induced LT-BM injury. C57BL/6 mice were exposed to 4 Gy γ-rays of total body irradiation (TBI) at a dose-rate of 1.08 Gy per minute, and the mice were treated with G-CSF (1 μg/each by ip) or vehicle at 2 and 6 h after TBI on the first day and then twice every day for 6 days. All mice were killed one month after TBI for analysis of peripheral blood cell counts, bone marrow cellularity and long-term HSC (CD34-lineage-sca1+c-kit+) frequency. The colony-forming unit-granulocyte and macrophage (CFU-GM) ability of HPC was measured by colony-forming cell (CFC) assay, and the HSC self-renewal capacity was analyzed by BM transplantation. The levels of ROS production, the expression of phospho-p38 mitogen-activated protein kinase (p-p38) and p16(INK4a) (p16) mRNA in HSCs were measured by flow cytometry and RT-PCR, respectively. The results of our studies show that G-CSF administration mitigated TBI-induced decreases in WBC and the suppression of HPC function (CFU-GM) (p < 0.05), whereas G-CSF exacerbated the suppression of long-term HSC engraftment after transplantation one month after TBI (p < 0.05); The increase in HSC damage was associated with increased ROS production, activation of p38 mitogen-activated protein kinase (p38), induction of senescence in HSCs. Our findings suggest that although G-CSF administration can reduce ARS, it can also exacerbate TBI-induced LT-BM injury in part by promoting HSC senescence via the ROS-p38-p16 pathway.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 31 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 31 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 6 19%
Student > Master 5 16%
Researcher 3 10%
Student > Doctoral Student 1 3%
Student > Bachelor 1 3%
Other 5 16%
Unknown 10 32%
Readers by discipline Count As %
Medicine and Dentistry 6 19%
Agricultural and Biological Sciences 4 13%
Biochemistry, Genetics and Molecular Biology 3 10%
Neuroscience 2 6%
Unspecified 1 3%
Other 3 10%
Unknown 12 39%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 25 November 2015.
All research outputs
#18,430,915
of 22,833,393 outputs
Outputs from Cell & Bioscience
#559
of 930 outputs
Outputs of similar age
#278,925
of 386,751 outputs
Outputs of similar age from Cell & Bioscience
#17
of 20 outputs
Altmetric has tracked 22,833,393 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 930 research outputs from this source. They receive a mean Attention Score of 3.5. This one is in the 12th percentile – i.e., 12% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 386,751 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.