↓ Skip to main content

Assessment of the performance of hidden Markov models for imputation in animal breeding

Overview of attention for article published in Genetics Selection Evolution, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (81st percentile)
  • High Attention Score compared to outputs of the same age and source (88th percentile)

Mentioned by

twitter
17 X users

Citations

dimensions_citation
16 Dimensions

Readers on

mendeley
52 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Assessment of the performance of hidden Markov models for imputation in animal breeding
Published in
Genetics Selection Evolution, September 2018
DOI 10.1186/s12711-018-0416-8
Pubmed ID
Authors

Andrew Whalen, Gregor Gorjanc, Roger Ros-Freixedes, John M. Hickey

Abstract

In this paper, we review the performance of various hidden Markov model-based imputation methods in animal breeding populations. Traditionally, pedigree and heuristic-based imputation methods have been used for imputation in large animal populations due to their computational efficiency, scalability, and accuracy. Recent advances in the area of human genetics have increased the ability of probabilistic hidden Markov model methods to perform accurate phasing and imputation in large populations. These advances may enable these methods to be useful for routine use in large animal populations, particularly in populations where pedigree information is not readily available. To test the performance of hidden Markov model-based imputation, we evaluated the accuracy and computational cost of several methods in a series of simulated populations and a real animal population without using a pedigree. First, we tested single-step (diploid) imputation, which performs both phasing and imputation. Second, we tested pre-phasing followed by haploid imputation. Overall, we used four available diploid imputation methods (fastPHASE, Beagle v4.0, IMPUTE2, and MaCH), three phasing methods, (SHAPEIT2, HAPI-UR, and Eagle2), and three haploid imputation methods (IMPUTE2, Beagle v4.1, and Minimac3). We found that performing pre-phasing and haploid imputation was faster and more accurate than diploid imputation. In particular, among all the methods tested, pre-phasing with Eagle2 or HAPI-UR and imputing with Minimac3 or IMPUTE2 gave the highest accuracies with both simulated and real data. The results of this study suggest that hidden Markov model-based imputation algorithms are an accurate and computationally feasible approach for performing imputation without a pedigree when pre-phasing and haploid imputation are used. Of the algorithms tested, the combination of Eagle2 and Minimac3 gave the highest accuracy across the simulated and real datasets.

X Demographics

X Demographics

The data shown below were collected from the profiles of 17 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 52 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 52 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 9 17%
Researcher 8 15%
Student > Bachelor 6 12%
Student > Master 5 10%
Student > Doctoral Student 2 4%
Other 7 13%
Unknown 15 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 20 38%
Biochemistry, Genetics and Molecular Biology 8 15%
Computer Science 3 6%
Engineering 2 4%
Economics, Econometrics and Finance 1 2%
Other 1 2%
Unknown 17 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 11. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 11 June 2019.
All research outputs
#3,270,555
of 25,385,509 outputs
Outputs from Genetics Selection Evolution
#67
of 821 outputs
Outputs of similar age
#63,960
of 350,978 outputs
Outputs of similar age from Genetics Selection Evolution
#1
of 9 outputs
Altmetric has tracked 25,385,509 research outputs across all sources so far. Compared to these this one has done well and is in the 87th percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 821 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done particularly well, scoring higher than 91% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 350,978 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 81% of its contemporaries.
We're also able to compare this research output to 9 others from the same source and published within six weeks on either side of this one. This one has scored higher than all of them