↓ Skip to main content

Fluid-enhanced surface diffusion controls intraparticle phase transformations

Overview of attention for article published in Nature Materials, September 2018
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (98th percentile)
  • High Attention Score compared to outputs of the same age and source (93rd percentile)

Mentioned by

news
16 news outlets
blogs
3 blogs
twitter
9 X users
patent
1 patent
facebook
3 Facebook pages

Citations

dimensions_citation
109 Dimensions

Readers on

mendeley
221 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Fluid-enhanced surface diffusion controls intraparticle phase transformations
Published in
Nature Materials, September 2018
DOI 10.1038/s41563-018-0168-4
Pubmed ID
Authors

Yiyang Li, Hungru Chen, Kipil Lim, Haitao D. Deng, Jongwoo Lim, Dimitrios Fraggedakis, Peter M. Attia, Sang Chul Lee, Norman Jin, Jože Moškon, Zixuan Guan, William E. Gent, Jihyun Hong, Young-Sang Yu, Miran Gaberšček, M. Saiful Islam, Martin Z. Bazant, William C. Chueh

Abstract

Phase transformations driven by compositional change require mass flux across a phase boundary. In some anisotropic solids, however, the phase boundary moves along a non-conductive crystallographic direction. One such material is LiXFePO4, an electrode for lithium-ion batteries. With poor bulk ionic transport along the direction of phase separation, it is unclear how lithium migrates during phase transformations. Here, we show that lithium migrates along the solid/liquid interface without leaving the particle, whereby charge carriers do not cross the double layer. X-ray diffraction and microscopy experiments as well as ab initio molecular dynamics simulations show that organic solvent and water molecules promote this surface ion diffusion, effectively rendering LiXFePO4 a three-dimensional lithium-ion conductor. Phase-field simulations capture the effects of surface diffusion on phase transformation. Lowering surface diffusivity is crucial towards supressing phase separation. This work establishes fluid-enhanced surface diffusion as a key dial for tuning phase transformation in anisotropic solids.

X Demographics

X Demographics

The data shown below were collected from the profiles of 9 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 221 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 221 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 68 31%
Researcher 39 18%
Student > Master 21 10%
Student > Doctoral Student 14 6%
Student > Bachelor 12 5%
Other 23 10%
Unknown 44 20%
Readers by discipline Count As %
Materials Science 65 29%
Chemistry 36 16%
Engineering 21 10%
Energy 10 5%
Chemical Engineering 9 4%
Other 17 8%
Unknown 63 29%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 141. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 12 December 2023.
All research outputs
#286,099
of 25,008,338 outputs
Outputs from Nature Materials
#198
of 4,273 outputs
Outputs of similar age
#6,078
of 347,419 outputs
Outputs of similar age from Nature Materials
#5
of 65 outputs
Altmetric has tracked 25,008,338 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 98th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,273 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 33.1. This one has done particularly well, scoring higher than 95% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 347,419 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 98% of its contemporaries.
We're also able to compare this research output to 65 others from the same source and published within six weeks on either side of this one. This one has done particularly well, scoring higher than 93% of its contemporaries.