↓ Skip to main content

Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation

Overview of attention for article published in Medical Image Analysis, December 2011
Altmetric Badge

Mentioned by

twitter
1 X user

Readers on

mendeley
76 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Construction of 3D MR image-based computer models of pathologic hearts, augmented with histology and optical fluorescence imaging to characterize action potential propagation
Published in
Medical Image Analysis, December 2011
DOI 10.1016/j.media.2011.11.007
Pubmed ID
Authors

Mihaela Pop, Maxime Sermesant, Garry Liu, Jatin Relan, Tommaso Mansi, Alan Soong, Jean-Marc Peyrat, Michael V. Truong, Paul Fefer, Elliot R. McVeigh, Herve Delingette, Alexander J. Dick, Nicholas Ayache, Graham A. Wright

Abstract

Cardiac computer models can help us understand and predict the propagation of excitation waves (i.e., action potential, AP) in healthy and pathologic hearts. Our broad aim is to develop accurate 3D MR image-based computer models of electrophysiology in large hearts (translatable to clinical applications) and to validate them experimentally. The specific goals of this paper were to match models with maps of the propagation of optical AP on the epicardial surface using large porcine hearts with scars, estimating several parameters relevant to macroscopic reaction-diffusion electrophysiological models. We used voltage-sensitive dyes to image AP in large porcine hearts with scars (three specimens had chronic myocardial infarct, and three had radiofrequency RF acute scars). We first analyzed the main AP waves' characteristics: duration (APD) and propagation under controlled pacing locations and frequencies as recorded from 2D optical images. We further built 3D MR image-based computer models that have information derived from the optical measures, as well as morphologic MRI data (i.e., myocardial anatomy, fiber directions and scar definition). The scar morphology from MR images was validated against corresponding whole-mount histology. We also compared the measured 3D isochronal maps of depolarization to simulated isochrones (the latter replicating precisely the experimental conditions), performing model customization and 3D volumetric adjustments of the local conductivity. Our results demonstrated that mean APD in the border zone (BZ) of the infarct scars was reduced by ~13% (compared to ~318 ms measured in normal zone, NZ), but APD did not change significantly in the thin BZ of the ablation scars. A generic value for velocity ratio (1:2.7) in healthy myocardial tissue was derived from measured values of transverse and longitudinal conduction velocities relative to fibers direction (22 cm/s and 60 cm/s, respectively). The model customization and 3D volumetric adjustment reduced the differences between measurements and simulations; for example, from one pacing location, the adjustment reduced the absolute error in local depolarization times by a factor of 5 (i.e., from 58 ms to 11 ms) in the infarcted heart, and by a factor of 6 (i.e., from 60 ms to 9 ms) in the heart with the RF scar. Moreover, the sensitivity of adjusted conductivity maps to different pacing locations was tested, and the errors in activation times were found to be of approximately 10-12 ms independent of pacing location used to adjust model parameters, suggesting that any location can be used for model predictions.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 76 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
China 2 3%
France 1 1%
Netherlands 1 1%
New Zealand 1 1%
United Kingdom 1 1%
Unknown 70 92%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 19 25%
Student > Master 13 17%
Researcher 11 14%
Other 6 8%
Professor 5 7%
Other 11 14%
Unknown 11 14%
Readers by discipline Count As %
Engineering 21 28%
Computer Science 14 18%
Medicine and Dentistry 8 11%
Agricultural and Biological Sciences 7 9%
Physics and Astronomy 4 5%
Other 8 11%
Unknown 14 18%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 07 December 2011.
All research outputs
#22,759,802
of 25,374,647 outputs
Outputs from Medical Image Analysis
#1,480
of 1,653 outputs
Outputs of similar age
#226,612
of 247,132 outputs
Outputs of similar age from Medical Image Analysis
#11
of 12 outputs
Altmetric has tracked 25,374,647 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,653 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 5.3. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 247,132 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 12 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.