↓ Skip to main content

Anti-inflammatory effects of minocycline are mediated by retinoid signaling

Overview of attention for article published in BMC Neuroscience, September 2018
Altmetric Badge

About this Attention Score

  • Average Attention Score compared to outputs of the same age
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
2 X users

Citations

dimensions_citation
17 Dimensions

Readers on

mendeley
33 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Anti-inflammatory effects of minocycline are mediated by retinoid signaling
Published in
BMC Neuroscience, September 2018
DOI 10.1186/s12868-018-0460-x
Pubmed ID
Authors

Vera Clemens, Francesca Regen, Nathalie Le Bret, Isabella Heuser, Julian Hellmann-Regen

Abstract

Minocycline is a lipophilic tetracycline of increasing appeal in neuroscience as it inhibits microglial activation, a mechanism involved in numerous neuropsychiatric disorders. Own data point towards retinoid-mediated effects of minocycline in murine brain and skin, and towards a vicious cycle of neuroinflammation which is driven by microglial activation-induced breakdown of local retinoids such as retinoic acid (RA). We therefore sought to study minocycline's anti-inflammatory effects on human microglial-like monocyte-derived cells in the context of retinoid signaling. As hypothesized, minocycline exposure resulted in a substantial increase of RA levels in the human monocytic cell line THP-1. While pro-inflammatory stimulation with lipopolysaccharides resulted in increased tryptophane-degrading indoleamine-2,3-dioxygenase IDO-expression and TNF-α levels in primary human monocyte-derived microglial-like cells, this effect was attenuated by minocycline only in the presence of retinoids. The anti-inflammatory effects of minocycline on TNF-α expression were completely abolished by a pharmacological blockage of retinoic acid receptors (RARs) using BMS-493 and unaffected by selectively blocking retinoid-X-receptors using UVI-3003. Our data indicate for the first time a RA-dependent, anti-inflammatory effect for minocycline in human microglial-like cells via inhibition of local RA turnover. The RA-dependent mode of action for minocycline appears to be predominantly mediated through RAR-signaling.

X Demographics

X Demographics

The data shown below were collected from the profiles of 2 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 33 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 33 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 8 24%
Student > Doctoral Student 4 12%
Student > Bachelor 4 12%
Student > Ph. D. Student 2 6%
Student > Postgraduate 2 6%
Other 3 9%
Unknown 10 30%
Readers by discipline Count As %
Medicine and Dentistry 4 12%
Agricultural and Biological Sciences 4 12%
Biochemistry, Genetics and Molecular Biology 3 9%
Immunology and Microbiology 3 9%
Nursing and Health Professions 2 6%
Other 7 21%
Unknown 10 30%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 2. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 10 November 2022.
All research outputs
#14,411,951
of 23,081,466 outputs
Outputs from BMC Neuroscience
#609
of 1,251 outputs
Outputs of similar age
#191,205
of 341,501 outputs
Outputs of similar age from BMC Neuroscience
#10
of 20 outputs
Altmetric has tracked 23,081,466 research outputs across all sources so far. This one is in the 35th percentile – i.e., 35% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,251 research outputs from this source. They receive a mean Attention Score of 4.3. This one is in the 47th percentile – i.e., 47% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 341,501 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 41st percentile – i.e., 41% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 20 others from the same source and published within six weeks on either side of this one. This one has gotten more attention than average, scoring higher than 50% of its contemporaries.