↓ Skip to main content

Characterization of the bacterial communities on recent Icelandic volcanic deposits of different ages

Overview of attention for article published in BMC Microbiology, September 2018
Altmetric Badge

About this Attention Score

  • In the top 25% of all research outputs scored by Altmetric
  • Good Attention Score compared to outputs of the same age (75th percentile)
  • Good Attention Score compared to outputs of the same age and source (78th percentile)

Mentioned by

blogs
1 blog
twitter
1 X user

Citations

dimensions_citation
18 Dimensions

Readers on

mendeley
51 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Characterization of the bacterial communities on recent Icelandic volcanic deposits of different ages
Published in
BMC Microbiology, September 2018
DOI 10.1186/s12866-018-1262-0
Pubmed ID
Authors

Bo Byloos, Pieter Monsieurs, Mohamed Mysara, Natalie Leys, Nico Boon, Rob Van Houdt

Abstract

Basalt is the most common igneous rock on the Earth's surface covering. Basalt-associated microorganisms drive the cycling and sequestration of different elements such as nitrogen, carbon and other nutrients, which facilitate subsequent pioneer and plant development, impacting long-term regulation of the Earth's temperature and biosphere. The initial processes of colonization and subsequent rock weathering by microbial communities are still poorly understood and relatively few data are available on the diversity and richness of the communities inhabiting successive and chronological lava flows. In this study, the bacterial communities present on lava deposits from different eruptions of the 1975-84 Krafla Fires (32-, 35- and 39-year old, respectively) at the Krafla, Iceland, were determined. Three sites were sampled for each deposit (32-, 35- and 39-year old), two proximal sites (at 10 m distance) and one more distant site (at 100 m from the two other sites). The determined chemical composition and metal concentrations were similar for the three basalt deposits. No significant differences were observed in the total number of cells in each flow. 16S rRNA gene amplicon sequencing showed that the most abundant classified phylum across the 3 flows was Proteobacteria, although predominance of Acidobacteria, Actinobacteria and Firmicutes was observed for some sampling sites. In addition, a considerable fraction of the operational taxonomic units remained unclassified. Alpha diversity (Shannon, inverse Simpson and Chao), HOMOVA and AMOVA only showed a significant difference for Shannon between the 32- and 39-year old flow (p < 0.05). Nonmetric multidimensional scaling (NMDS) analysis showed that age significantly (p = 0.026) influenced the leftward movement along NMDS axis 1. Although NMDS indicated that the (relatively small) age difference of the deposits appeared to impact the bacterial community, this analysis was not consistent with AMOVA and HOMOVA, indicating no significant difference in community structure. The combined results drive us to conclude that the (relatively small) age differences of the deposits do not appear to be the main factor shaping the microbial communities. Probably other factors such as spatial heterogeneity, associated carbon content, exogenous rain precipitations and wind also affect the diversity and dynamics.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 51 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 51 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 16 31%
Researcher 7 14%
Student > Bachelor 5 10%
Student > Postgraduate 3 6%
Student > Master 3 6%
Other 3 6%
Unknown 14 27%
Readers by discipline Count As %
Agricultural and Biological Sciences 9 18%
Biochemistry, Genetics and Molecular Biology 7 14%
Earth and Planetary Sciences 6 12%
Environmental Science 5 10%
Immunology and Microbiology 3 6%
Other 5 10%
Unknown 16 31%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 8. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2018.
All research outputs
#4,140,101
of 23,103,903 outputs
Outputs from BMC Microbiology
#439
of 3,218 outputs
Outputs of similar age
#82,138
of 340,828 outputs
Outputs of similar age from BMC Microbiology
#16
of 74 outputs
Altmetric has tracked 23,103,903 research outputs across all sources so far. Compared to these this one has done well and is in the 81st percentile: it's in the top 25% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 3,218 research outputs from this source. They receive a mean Attention Score of 4.1. This one has done well, scoring higher than 86% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 340,828 tracked outputs that were published within six weeks on either side of this one in any source. This one has done well, scoring higher than 75% of its contemporaries.
We're also able to compare this research output to 74 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 78% of its contemporaries.