↓ Skip to main content

Transcriptome-driven integrative exploration of functional state of ureter tissue affected by CAKUT

Overview of attention for article published in Life Sciences, November 2018
Altmetric Badge

Mentioned by

twitter
1 tweeter

Citations

dimensions_citation
5 Dimensions

Readers on

mendeley
8 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Transcriptome-driven integrative exploration of functional state of ureter tissue affected by CAKUT
Published in
Life Sciences, November 2018
DOI 10.1016/j.lfs.2018.09.042
Pubmed ID
Authors

Ivan Jovanovic, Maja Zivkovic, Mirjana Kostic, Zoran Krstic, Tamara Djuric, Danilo Licastro, Germana Meroni, Dragan Alavantic, Aleksandra Stankovic

Abstract

(1) to identify the most dysregulated genes in ureter tissue affected by congenital anomalies of the kidney and urinary tract (CAKUT) and to extract the biological meaning of these markers; (2) to describe the key molecular networks in CAKUT and to provide expression validation of the genes selected from these networks. Transcriptome data was obtained from ureter samples of CAKUT patients and controls by Illumina iScan microarray. Identification of differentially expressed genes was coupled with subsequent bioinformatics analyses. Expression of candidate genes was validated by qRT-PCR. Analysis of the transcriptome led to the identification of 78 commonly dysregulated genes in CAKUT tissue compared to controls. Integrative bioinformatic analyses of differentially expressed genes identified 7 major networks. The targets for qRT-PCR validation were selected as members of the major molecular networks in CAKUT, which had both, the significant high fold change and biological relevance for CAKUT. By qRT-PCR the substantial increase of LCN2, PROM1, SOSTDC1, and decrease of INA, RASD1 and TAC3 mRNA levels was confirmed. Since CAKUT is a leading cause of end-stage renal disease in children, the search for molecular targets for postnatal therapy is of particular interest. Data described in this study represents the gene expression profile and significant molecular networks specific to human ureter affected by CAKUT. The discovery of impaired molecular factors and processes is the step towards the uncovering of the key mechanisms that reflect CAKUT postnatally and could lead to the affected tissue deterioration and end organ damage.

Twitter Demographics

The data shown below were collected from the profile of 1 tweeter who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 8 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 8 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 3 38%
Librarian 1 13%
Professor 1 13%
Student > Doctoral Student 1 13%
Student > Postgraduate 1 13%
Other 0 0%
Unknown 1 13%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 4 50%
Agricultural and Biological Sciences 1 13%
Medicine and Dentistry 1 13%
Unknown 2 25%

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 28 September 2018.
All research outputs
#12,030,864
of 13,568,727 outputs
Outputs from Life Sciences
#4,102
of 4,651 outputs
Outputs of similar age
#228,518
of 265,069 outputs
Outputs of similar age from Life Sciences
#62
of 88 outputs
Altmetric has tracked 13,568,727 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 4,651 research outputs from this source. They receive a mean Attention Score of 3.9. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 265,069 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 88 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.