↓ Skip to main content

Exercise-based cardiac rehabilitation for coronary heart disease

Overview of attention for article published in Cochrane database of systematic reviews, January 2016
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (96th percentile)
  • High Attention Score compared to outputs of the same age and source (85th percentile)

Citations

dimensions_citation
256 Dimensions

Readers on

mendeley
958 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Exercise-based cardiac rehabilitation for coronary heart disease
Published in
Cochrane database of systematic reviews, January 2016
DOI 10.1002/14651858.cd001800.pub3
Pubmed ID
Authors

Lindsey Anderson, David R Thompson, Neil Oldridge, Ann-Dorthe Zwisler, Karen Rees, Nicole Martin, Rod S Taylor

Abstract

Coronary heart disease (CHD) is the single most common cause of death globally. However, with falling CHD mortality rates, an increasing number of people live with CHD and may need support to manage their symptoms and prognosis. Exercise-based cardiac rehabilitation (CR) aims to improve the health and outcomes of people with CHD. This is an update of a Cochrane systematic review previously published in 2011. To assess the effectiveness and cost-effectiveness of exercise-based CR (exercise training alone or in combination with psychosocial or educational interventions) compared with usual care on mortality, morbidity and HRQL in patients with CHD.To explore the potential study level predictors of the effectiveness of exercise-based CR in patients with CHD. We updated searches from the previous Cochrane review, by searching Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library, Issue 6, 2014) from December 2009 to July 2014. We also searched MEDLINE (Ovid), EMBASE (Ovid), CINAHL (EBSCO) and Science Citation Index Expanded (December 2009 to July 2014). We included randomised controlled trials (RCTs) of exercise-based interventions with at least six months' follow-up, compared with a no exercise control. The study population comprised men and women of all ages who have had a myocardial infarction (MI), coronary artery bypass graft (CABG) or percutaneous coronary intervention (PCI), or who have angina pectoris, or coronary artery disease. We included RCTs that reported at least one of the following outcomes: mortality, MI, revascularisations, hospitalisations, health-related quality of life (HRQL), or costs. Two review authors independently screened all identified references for inclusion based on the above inclusion and exclusion criteria. One author extracted data from the included trials and assessed their risk of bias; a second review author checked data. We stratified meta-analysis by the duration of follow up of trials, i.e. short-term: 6 to 12 months, medium-term: 13 to 36 months, and long-term: > 3 years. This review included 63 trials which randomised 14,486 people with CHD. This latest update identified 16 new trials (3872 participants). The population included predominantly post-MI and post-revascularisation patients and the mean age of patients within the trials ranged from 47.5 to 71.0 years. Women accounted for fewer than 15% of the patients recruited. Overall trial reporting was poor, although there was evidence of an improvement in quality of reporting in more recent trials.As we found no significant difference in the impact of exercise-based CR on clinical outcomes across follow-up, we focused on reporting findings pooled across all trials at their longest follow-up (median 12 months). Exercise-based CR reduced cardiovascular mortality compared with no exercise control (27 trials; risk ratio (RR) 0.74, 95% CI 0.64 to 0.86). There was no reduction in total mortality with CR (47 trials, RR 0.96, 95% CI 0.88 to 1.04). The overall risk of hospital admissions was reduced with CR (15 trials; RR 0.82, 95% CI 0.70 to 0.96) but there was no significant impact on the risk of MI (36 trials; RR 0.90, 95% CI 0.79 to 1.04), CABG (29 trials; RR 0.96, 95% CI 0.80 to 1.16) or PCI (18 trials; RR 0.85, 95% CI 0.70 to 1.04).There was little evidence of statistical heterogeneity across trials for all event outcomes, and there was evidence of small study bias for MI and hospitalisation, but no other outcome. Predictors of clinical outcomes were examined across the longest follow-up of studies using univariate meta-regression. Results show that benefits in outcomes were independent of participants' CHD case mix (proportion of patients with MI), type of CR (exercise only vs comprehensive rehabilitation) dose of exercise, length of follow-up, trial publication date, setting (centre vs home-based), study location (continent), sample size or risk of bias.Given the heterogeneity in outcome measures and reporting methods, meta-analysis was not undertaken for HRQL. In five out of 20 trials reporting HRQL using validated measures, there was evidence of significant improvement in most or all of the sub-scales with exercise-based CR compared to control at follow-up. Four trial-based economic evaluation studies indicated exercise-based CR to be a potentially cost-effective use of resources in terms of gain in quality-adjusted life years.The quality of the evidence for outcomes reported in the review was rated using the GRADE method. The quality of the evidence varied widely by outcome and ranged from low to moderate. This updated Cochrane review supports the conclusions of the previous version of this review that, compared with no exercise control, exercise-based CR reduces the risk of cardiovascular mortality but not total mortality. We saw a significant reduction in the risk of hospitalisation with CR but not in the risk of MI or revascularisation. We identified further evidence supporting improved HRQL with exercise-based CR. More recent trials were more likely to be well reported and include older and female patients. However, the population studied in this review still consists predominantly of lower risk individuals following MI or revascularisation. Further well conducted RCTs are needed to assess the impact of exercise-based CR in higher risk CHD groups and also those presenting with stable angina. These trials should include validated HRQL outcome measures, explicitly report clinical event outcomes including mortality and hospital admissions, and assess costs and cost-effectiveness.

Twitter Demographics

The data shown below were collected from the profiles of 33 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 958 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United Kingdom 7 <1%
Spain 2 <1%
Sweden 1 <1%
Netherlands 1 <1%
Portugal 1 <1%
Unknown 946 99%

Demographic breakdown

Readers by professional status Count As %
Student > Master 173 18%
Student > Bachelor 163 17%
Student > Ph. D. Student 117 12%
Researcher 86 9%
Student > Postgraduate 71 7%
Other 212 22%
Unknown 136 14%
Readers by discipline Count As %
Medicine and Dentistry 344 36%
Nursing and Health Professions 187 20%
Sports and Recreations 64 7%
Psychology 41 4%
Social Sciences 23 2%
Other 112 12%
Unknown 187 20%

Attention Score in Context

This research output has an Altmetric Attention Score of 48. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 04 March 2020.
All research outputs
#412,845
of 14,559,083 outputs
Outputs from Cochrane database of systematic reviews
#1,098
of 11,020 outputs
Outputs of similar age
#12,981
of 363,367 outputs
Outputs of similar age from Cochrane database of systematic reviews
#31
of 212 outputs
Altmetric has tracked 14,559,083 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 97th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 11,020 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 22.3. This one has done particularly well, scoring higher than 90% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 363,367 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 96% of its contemporaries.
We're also able to compare this research output to 212 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 85% of its contemporaries.