↓ Skip to main content

Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling…

Overview of attention for article published in Oxidative Medicine & Cellular Longetivity, December 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
42 Dimensions

Readers on

mendeley
84 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Modulation of Hydrogen Peroxide-Induced Oxidative Stress in Human Neuronal Cells by Thymoquinone-Rich Fraction and Thymoquinone via Transcriptomic Regulation of Antioxidant and Apoptotic Signaling Genes
Published in
Oxidative Medicine & Cellular Longetivity, December 2015
DOI 10.1155/2016/2528935
Pubmed ID
Authors

Norsharina Ismail, Maznah Ismail, Nur Hanisah Azmi, Muhammad Firdaus Abu Bakar, Hamidon Basri, Maizaton Atmadini Abdullah

Abstract

Nigella sativa Linn. (N. sativa) and its bioactive constituent Thymoquinone (TQ) have demonstrated numerous pharmacological attributes. In the present study, the neuroprotective properties of Thymoquinone-rich fraction (TQRF) and TQ against hydrogen peroxide- (H2O2-) induced neurotoxicity in differentiated human SH-SY5Y cells were investigated. TQRF was extracted using supercritical fluid extraction while TQ was acquired commercially, and their effects on H2O2 were evaluated using cell viability assay, reactive oxygen species (ROS) assay, morphological observation, and multiplex gene expression. Both TQRF and TQ protected the cells against H2O2 by preserving the mitochondrial metabolic enzymes, reducing intracellular ROS levels, preserving morphological architecture, and modulating the expression of genes related to antioxidants (SOD1, SOD2, and catalase) and signaling genes (p53, AKT1, ERK1/2, p38 MAPK, JNK, and NF-κβ). In conclusion, the enhanced efficacy of TQRF over TQ was likely due to the synergism of multiple constituents in TQRF. The efficacy of TQRF was better than that of TQ alone when equal concentrations of TQ in TQRF were compared. In addition, TQRF also showed comparable effects to TQ when the same concentrations were tested. These findings provide further support for the use of TQRF as an alternative to combat oxidative stress insults in neurodegenerative diseases.

Timeline

Login to access the full chart related to this output.

If you don’t have an account, click here to discover Explorer

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
As of 1 July 2024, you may notice a temporary increase in the numbers of X profiles with Unknown location. Click here to learn more.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 84 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Indonesia 1 1%
Unknown 83 99%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 17 20%
Student > Master 10 12%
Student > Bachelor 9 11%
Researcher 6 7%
Student > Doctoral Student 5 6%
Other 13 15%
Unknown 24 29%
Readers by discipline Count As %
Agricultural and Biological Sciences 12 14%
Biochemistry, Genetics and Molecular Biology 8 10%
Medicine and Dentistry 8 10%
Pharmacology, Toxicology and Pharmaceutical Science 7 8%
Chemistry 6 7%
Other 15 18%
Unknown 28 33%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 30 January 2016.
All research outputs
#23,887,613
of 26,589,077 outputs
Outputs from Oxidative Medicine & Cellular Longetivity
#2,815
of 3,687 outputs
Outputs of similar age
#346,308
of 402,655 outputs
Outputs of similar age from Oxidative Medicine & Cellular Longetivity
#100
of 132 outputs
Altmetric has tracked 26,589,077 research outputs across all sources so far. This one is in the 1st percentile – i.e., 1% of other outputs scored the same or lower than it.
So far Altmetric has tracked 3,687 research outputs from this source. They typically receive more attention than average, with a mean Attention Score of 9.7. This one is in the 1st percentile – i.e., 1% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 402,655 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 132 others from the same source and published within six weeks on either side of this one. This one is in the 1st percentile – i.e., 1% of its contemporaries scored the same or lower than it.