↓ Skip to main content

Glyco-Engineering

Overview of attention for book
Cover of 'Glyco-Engineering'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Current Approaches to Engineering N -Linked Protein Glycosylation in Bacteria
  3. Altmetric Badge
    Chapter 2 Inverse Metabolic Engineering for Enhanced Glycoprotein Production in Escherichia coli
  4. Altmetric Badge
    Chapter 3 GlycoSNAP: A High-Throughput Screening Methodology for Engineering Designer Glycosylation Enzymes
  5. Altmetric Badge
    Chapter 4 Production of Glycoproteins with Asparagine-Linked N -Acetylglucosamine in Escherichia coli
  6. Altmetric Badge
    Chapter 5 Glyco-engineering O-Antigen-Based Vaccines and Diagnostics in E. coli
  7. Altmetric Badge
    Chapter 6 Progress in Yeast Glycosylation Engineering.
  8. Altmetric Badge
    Chapter 7 Protein Production with a Pichia pastoris OCH1 Knockout Strain in Fed-Batch Mode.
  9. Altmetric Badge
    Chapter 8 Engineering the Pichia pastoris N-Glycosylation Pathway Using the GlycoSwitch Technology
  10. Altmetric Badge
    Chapter 9 Development of a Valuable Yeast Strain Using a Novel Mutagenesis Technique for the Effective Production of Therapeutic Glycoproteins.
  11. Altmetric Badge
    Chapter 10 An Overview and History of Glyco-Engineering in Insect Expression Systems.
  12. Altmetric Badge
    Chapter 11 Glyco-Engineering
  13. Altmetric Badge
    Chapter 12 Glyco-Engineering
  14. Altmetric Badge
    Chapter 13 Engineering N-Glycosylation Pathway in Insect Cells: Suppression of β-N-Acetylglucosaminidase and Expression of β-1,4-Galactosyltransferase.
  15. Altmetric Badge
    Chapter 14 N-Glyco-Engineering in Plants: Update on Strategies and Major Achievements
  16. Altmetric Badge
    Chapter 15 Glyco-Engineering
  17. Altmetric Badge
    Chapter 16 Im“plant”ing of Mammalian Glycosyltransferase Gene into Plant Suspension-Cultured Cells Using Agrobacterium-Mediated Transformation
  18. Altmetric Badge
    Chapter 17 Transient Glyco-Engineering of N. benthamiana Aiming at the Synthesis of Multi-antennary Sialylated Proteins
  19. Altmetric Badge
    Chapter 18 Subcellular Targeting of Proteins Involved in Modification of Plant N- and O-Glycosylation
  20. Altmetric Badge
    Chapter 19 Assembly of Multigene Constructs Using Golden Gate Cloning.
  21. Altmetric Badge
    Chapter 20 Strategies for Engineering Protein N-Glycosylation Pathways in Mammalian Cells
  22. Altmetric Badge
    Chapter 21 Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells
  23. Altmetric Badge
    Chapter 22 Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants
  24. Altmetric Badge
    Chapter 23 Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications
  25. Altmetric Badge
    Chapter 24 Evaluation of Quenching and Extraction Methods for Nucleotide/Nucleotide Sugar Analysis
  26. Altmetric Badge
    Chapter 25 Chemoenzymatic Glyco-engineering of Monoclonal Antibodies
  27. Altmetric Badge
    Chapter 26 Chemical Polysialylation of Recombinant Human Proteins
  28. Altmetric Badge
    Chapter 27 Site-Specific Glycosylation Profiling Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS)
  29. Altmetric Badge
    Chapter 28 Mass Spectrometric Analysis of Oligo- and Polysialic Acids
  30. Altmetric Badge
    Chapter 29 Isomer-Specific Analysis of Released N-Glycans by LC-ESI MS/MS with Porous Graphitized Carbon
Attention for Chapter 24: Evaluation of Quenching and Extraction Methods for Nucleotide/Nucleotide Sugar Analysis
Altmetric Badge

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
11 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Evaluation of Quenching and Extraction Methods for Nucleotide/Nucleotide Sugar Analysis
Chapter number 24
Book title
Glyco-Engineering
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2760-9_24
Pubmed ID
Book ISBNs
978-1-4939-2759-3, 978-1-4939-2760-9
Authors

Katrin Braasch, Carina Villacrés, Michael Butler

Abstract

Nucleotide sugars are the donor substrates of glycosyltransferases and their availability is known to have an impact on the glycosylation of recombinant proteins including monoclonal antibodies. In addition, the intracellular concentration levels of these metabolites can provide information about the physiological/energetic state of the cell. Therefore, the ability to qualitatively and quantitatively determine the intracellular nucleotides and nucleotide sugars can give valuable insight into the metabolism associated with the glycosylation processes in cells. However, in order to be able to perform a consistent and reliable time specific analysis of these metabolites during a cell culture the metabolism of the cell needs to be stopped immediately at the point of sampling and an efficient extraction needs to be performed. Once the nucleotides and nucleotide sugars are extracted from the cell sample an efficient HPLC method is needed to separate all or most of the metabolites of interest to allow for their identification and quantification. Here, we describe an optimized method for the analysis of the intracellular nucleotide/nucleotide sugar pool in CHO suspension cells which includes protocols for quenching, extraction and HPLC analysis.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 11 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 11 100%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 4 36%
Professor > Associate Professor 1 9%
Researcher 1 9%
Student > Master 1 9%
Unknown 4 36%
Readers by discipline Count As %
Agricultural and Biological Sciences 2 18%
Engineering 2 18%
Biochemistry, Genetics and Molecular Biology 1 9%
Immunology and Microbiology 1 9%
Chemical Engineering 1 9%
Other 0 0%
Unknown 4 36%