↓ Skip to main content

Glyco-Engineering

Overview of attention for book
Cover of 'Glyco-Engineering'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Current Approaches to Engineering N -Linked Protein Glycosylation in Bacteria
  3. Altmetric Badge
    Chapter 2 Inverse Metabolic Engineering for Enhanced Glycoprotein Production in Escherichia coli
  4. Altmetric Badge
    Chapter 3 GlycoSNAP: A High-Throughput Screening Methodology for Engineering Designer Glycosylation Enzymes
  5. Altmetric Badge
    Chapter 4 Production of Glycoproteins with Asparagine-Linked N -Acetylglucosamine in Escherichia coli
  6. Altmetric Badge
    Chapter 5 Glyco-engineering O-Antigen-Based Vaccines and Diagnostics in E. coli
  7. Altmetric Badge
    Chapter 6 Progress in Yeast Glycosylation Engineering.
  8. Altmetric Badge
    Chapter 7 Protein Production with a Pichia pastoris OCH1 Knockout Strain in Fed-Batch Mode.
  9. Altmetric Badge
    Chapter 8 Engineering the Pichia pastoris N-Glycosylation Pathway Using the GlycoSwitch Technology
  10. Altmetric Badge
    Chapter 9 Development of a Valuable Yeast Strain Using a Novel Mutagenesis Technique for the Effective Production of Therapeutic Glycoproteins.
  11. Altmetric Badge
    Chapter 10 An Overview and History of Glyco-Engineering in Insect Expression Systems.
  12. Altmetric Badge
    Chapter 11 Glyco-Engineering
  13. Altmetric Badge
    Chapter 12 Glyco-Engineering
  14. Altmetric Badge
    Chapter 13 Engineering N-Glycosylation Pathway in Insect Cells: Suppression of β-N-Acetylglucosaminidase and Expression of β-1,4-Galactosyltransferase.
  15. Altmetric Badge
    Chapter 14 N-Glyco-Engineering in Plants: Update on Strategies and Major Achievements
  16. Altmetric Badge
    Chapter 15 Glyco-Engineering
  17. Altmetric Badge
    Chapter 16 Im“plant”ing of Mammalian Glycosyltransferase Gene into Plant Suspension-Cultured Cells Using Agrobacterium-Mediated Transformation
  18. Altmetric Badge
    Chapter 17 Transient Glyco-Engineering of N. benthamiana Aiming at the Synthesis of Multi-antennary Sialylated Proteins
  19. Altmetric Badge
    Chapter 18 Subcellular Targeting of Proteins Involved in Modification of Plant N- and O-Glycosylation
  20. Altmetric Badge
    Chapter 19 Assembly of Multigene Constructs Using Golden Gate Cloning.
  21. Altmetric Badge
    Chapter 20 Strategies for Engineering Protein N-Glycosylation Pathways in Mammalian Cells
  22. Altmetric Badge
    Chapter 21 Glycan Remodeling with Processing Inhibitors and Lectin-Resistant Eukaryotic Cells
  23. Altmetric Badge
    Chapter 22 Production of Highly Sialylated Recombinant Glycoproteins Using Ricinus communis Agglutinin-I-Resistant CHO Glycosylation Mutants
  24. Altmetric Badge
    Chapter 23 Metabolic Glyco-Engineering in Eukaryotic Cells and Selected Applications
  25. Altmetric Badge
    Chapter 24 Evaluation of Quenching and Extraction Methods for Nucleotide/Nucleotide Sugar Analysis
  26. Altmetric Badge
    Chapter 25 Chemoenzymatic Glyco-engineering of Monoclonal Antibodies
  27. Altmetric Badge
    Chapter 26 Chemical Polysialylation of Recombinant Human Proteins
  28. Altmetric Badge
    Chapter 27 Site-Specific Glycosylation Profiling Using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS)
  29. Altmetric Badge
    Chapter 28 Mass Spectrometric Analysis of Oligo- and Polysialic Acids
  30. Altmetric Badge
    Chapter 29 Isomer-Specific Analysis of Released N-Glycans by LC-ESI MS/MS with Porous Graphitized Carbon
Attention for Chapter 16: Im“plant”ing of Mammalian Glycosyltransferase Gene into Plant Suspension-Cultured Cells Using Agrobacterium-Mediated Transformation
Altmetric Badge

Citations

dimensions_citation
11 Dimensions

Readers on

mendeley
6 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Im“plant”ing of Mammalian Glycosyltransferase Gene into Plant Suspension-Cultured Cells Using Agrobacterium-Mediated Transformation
Chapter number 16
Book title
Glyco-Engineering
Published in
Methods in molecular biology, January 2015
DOI 10.1007/978-1-4939-2760-9_16
Pubmed ID
Book ISBNs
978-1-4939-2759-3, 978-1-4939-2760-9
Authors

Hiroyuki Kajiura, Kazuhito Fujiyama

Abstract

Enzymatic activity assay of exogenous glycosyltransferase (GT) and glycosylhydrolase (GH) expressed in plants is an important analysis for determination of the expression of the gene of interest. However, generations and establishment of in planta transgenic lines are time-consuming. Furthermore, the expression levels and the activities of the exogenous GTs and GHs are quite low and weak, the radiolabeled donor substrate had to be used to analyze the enzymatic activity. Here, we describe a protocol for the generation of transgenic plants using suspension-cultured cells and a high sensitive assay for GT, especially β1,4-galactosyltransferase, using microsomal fraction from plant cells and fluorescent-labeled sugar chains as an acceptor substrate. This method enables less-time-consuming preparation of stable transgenic plants, non-radiolabeled, high-throughput detail analysis which includes mass spectrometric analysis and exo-glycosidase digestions.

Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 6 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 6 100%

Demographic breakdown

Readers by professional status Count As %
Student > Master 2 33%
Researcher 2 33%
Student > Ph. D. Student 1 17%
Professor > Associate Professor 1 17%
Readers by discipline Count As %
Biochemistry, Genetics and Molecular Biology 3 50%
Agricultural and Biological Sciences 2 33%
Medicine and Dentistry 1 17%