↓ Skip to main content

Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease

Overview of attention for book
Cover of 'Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease'

Table of Contents

  1. Altmetric Badge
    Book Overview
  2. Altmetric Badge
    Chapter 1 Microbial endocrinology and the microbiota-gut-brain axis.
  3. Altmetric Badge
    Chapter 2 Utilizing "omics" tools to study the complex gut ecosystem.
  4. Altmetric Badge
    Chapter 3 The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control.
  5. Altmetric Badge
    Chapter 4 Intestinal Barrier Function and the Brain-Gut Axis
  6. Altmetric Badge
    Chapter 5 Vagal pathways for microbiome-brain-gut axis communication.
  7. Altmetric Badge
    Chapter 6 The brain-gut axis in health and disease.
  8. Altmetric Badge
    Chapter 7 Gastrointestinal hormones and their targets.
  9. Altmetric Badge
    Chapter 8 Microbiome, HPA axis and production of endocrine hormones in the gut. - PubMed - NCBI
  10. Altmetric Badge
    Chapter 9 Neuropeptides and the Microbiota-Gut-Brain Axis
  11. Altmetric Badge
    Chapter 10 Bacterial neuroactive compounds produced by psychobiotics.
  12. Altmetric Badge
    Chapter 11 Multidirectional chemical signalling between Mammalian hosts, resident microbiota, and invasive pathogens: neuroendocrine hormone-induced changes in bacterial gene expression.
  13. Altmetric Badge
    Chapter 12 Influence of stressor-induced nervous system activation on the intestinal microbiota and the importance for immunomodulation.
  14. Altmetric Badge
    Chapter 13 The effects of inflammation, infection and antibiotics on the microbiota-gut-brain axis.
  15. Altmetric Badge
    Chapter 14 Microbiota, inflammation and obesity.
  16. Altmetric Badge
    Chapter 15 Microbiota, Immunoregulatory Old Friends and Psychiatric Disorders
  17. Altmetric Badge
    Chapter 16 Microbiota-gut-brain axis and cognitive function.
  18. Altmetric Badge
    Chapter 17 The impact of microbiota on brain and behavior: mechanisms & therapeutic potential.
  19. Altmetric Badge
    Chapter 18 Neuroimaging the Microbiome-Gut-Brain Axis.
  20. Altmetric Badge
    Chapter 19 The Future of Probiotics for Disorders of the Brain-Gut Axis.
Attention for Chapter 15: Microbiota, Immunoregulatory Old Friends and Psychiatric Disorders
Altmetric Badge

About this Attention Score

  • In the top 5% of all research outputs scored by Altmetric
  • High Attention Score compared to outputs of the same age (95th percentile)
  • High Attention Score compared to outputs of the same age and source (84th percentile)

Mentioned by

news
1 news outlet
blogs
1 blog
twitter
20 X users
facebook
4 Facebook pages
googleplus
4 Google+ users
reddit
2 Redditors

Citations

dimensions_citation
124 Dimensions

Readers on

mendeley
215 Mendeley
citeulike
1 CiteULike
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Chapter title
Microbiota, Immunoregulatory Old Friends and Psychiatric Disorders
Chapter number 15
Book title
Microbial Endocrinology: The Microbiota-Gut-Brain Axis in Health and Disease
Published in
Advances in experimental medicine and biology, June 2014
DOI 10.1007/978-1-4939-0897-4_15
Pubmed ID
Book ISBNs
978-1-4939-0896-7, 978-1-4939-0897-4
Authors

Graham A W Rook, Charles L Raison, Christopher A Lowry, Graham A. W. Rook, Charles L. Raison, Christopher A. Lowry, Rook, Graham A. W., Raison, Charles L., Lowry, Christopher A.

Abstract

Regulation of the immune system is an important function of the gut microbiota. Increasing evidence suggests that modern living conditions cause the gut microbiota to deviate from the form it took during human evolution. Contributing factors include loss of helminth infections, encountering less microbial biodiversity, and modulation of the microbiota composition by diet and antibiotic use. Thus the gut microbiota is a major mediator of the hygiene hypothesis (or as we prefer, "Old Friends" mechanism), which describes the role of organisms with which we co-evolved, and that needed to be tolerated, as crucial inducers of immunoregulation. At least partly as a consequence of reduced exposure to immunoregulatory Old Friends, many but not all of which resided in the gut, high-income countries are undergoing large increases in a wide range of chronic inflammatory disorders including allergies, autoimmunity and inflammatory bowel diseases. Depression, anxiety and reduced stress resilience are comorbid with these conditions, or can occur in individuals with persistently raised circulating levels of biomarkers of inflammation in the absence of clinically apparent peripheral inflammatory disease. Moreover poorly regulated inflammation during pregnancy might contribute to brain developmental abnormalities that underlie some cases of autism spectrum disorders and schizophrenia. In this chapter we explain how the gut microbiota drives immunoregulation, how faulty immunoregulation and inflammation predispose to psychiatric disease, and how psychological stress drives further inflammation via pathways that involve the gut and microbiota. We also outline how this two-way relationship between the brain and inflammation implicates the microbiota, Old Friends and immunoregulation in the control of stress resilience.

X Demographics

X Demographics

The data shown below were collected from the profiles of 20 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 215 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
France 1 <1%
Ireland 1 <1%
United Kingdom 1 <1%
Denmark 1 <1%
Spain 1 <1%
Greece 1 <1%
United States 1 <1%
Unknown 208 97%

Demographic breakdown

Readers by professional status Count As %
Researcher 36 17%
Student > Master 36 17%
Student > Bachelor 28 13%
Student > Ph. D. Student 22 10%
Student > Doctoral Student 20 9%
Other 29 13%
Unknown 44 20%
Readers by discipline Count As %
Medicine and Dentistry 46 21%
Agricultural and Biological Sciences 26 12%
Psychology 24 11%
Biochemistry, Genetics and Molecular Biology 13 6%
Neuroscience 11 5%
Other 38 18%
Unknown 57 27%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 32. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 24 January 2022.
All research outputs
#1,058,304
of 22,979,862 outputs
Outputs from Advances in experimental medicine and biology
#120
of 4,957 outputs
Outputs of similar age
#11,203
of 229,524 outputs
Outputs of similar age from Advances in experimental medicine and biology
#7
of 44 outputs
Altmetric has tracked 22,979,862 research outputs across all sources so far. Compared to these this one has done particularly well and is in the 95th percentile: it's in the top 5% of all research outputs ever tracked by Altmetric.
So far Altmetric has tracked 4,957 research outputs from this source. They typically receive a little more attention than average, with a mean Attention Score of 6.1. This one has done particularly well, scoring higher than 97% of its peers.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 229,524 tracked outputs that were published within six weeks on either side of this one in any source. This one has done particularly well, scoring higher than 95% of its contemporaries.
We're also able to compare this research output to 44 others from the same source and published within six weeks on either side of this one. This one has done well, scoring higher than 84% of its contemporaries.