↓ Skip to main content

Radioiodine therapy versus antithyroid medications for Graves' disease

Overview of attention for article published in Cochrane database of systematic reviews, February 2016
Altmetric Badge

About this Attention Score

  • Good Attention Score compared to outputs of the same age (71st percentile)
  • Average Attention Score compared to outputs of the same age and source

Mentioned by

twitter
5 tweeters
facebook
3 Facebook pages

Citations

dimensions_citation
15 Dimensions

Readers on

mendeley
142 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Radioiodine therapy versus antithyroid medications for Graves' disease
Published in
Cochrane database of systematic reviews, February 2016
DOI 10.1002/14651858.cd010094.pub2
Pubmed ID
Authors

Chao Ma, Jiawei Xie, Hui Wang, Jinsong Li, Suyun Chen

Abstract

Graves' disease is the most common cause of hyperthyroidism. Both antithyroid medications and radioiodine are commonly used treatments but their frequency of use varies between regions and countries. Despite the commonness of the diagnosis, any possible differences between the two treatments with respect to long-term outcomes remain unknown. To assess the effects of radioiodine therapy versus antithyroid medications for Graves' disease. We performed a systematic literature search in the Cochrane Library, MEDLINE and EMBASE and the trials registers ICTRP Search Portal and ClinicalTrials.gov. The date of the last search was September 2015 for all databases. Randomised controlled trials (RCTs) comparing the effects of radioiodine therapy versus antithyroid medications for Graves' disease with at least two years follow-up. Two authors independently screened titles and abstracts for relevance. One author carried out screening for inclusion, data extraction and 'Risk of bias' assessment and a second author checked this. We presented data not suitable for meta-analysis as descriptive data. We analysed the overall quality of evidence utilising the GRADE instrument. We included two RCTs involving 425 adult participants with Graves' disease in this review. Altogether 204 participants were randomised to radioiodine therapy and 221 to methimazole therapy. A single dose of radioiodine was administered. The duration of methimazole medication was 18 months. The period of follow-up was at least two years, depending on the outcome measured. For most outcome measures risk of bias was low; for the outcomes health-related quality of life as well as development and worsening of Graves' ophthalmopathy risks of performance bias and detection bias were high in at least one of the two RCTs.Health-related quality of life appeared to be similar in the radioiodine and methimazole treatment groups, however no quantitative data were reported (425 participants; 2 trials; low quality evidence). The development and worsening of Graves' ophthalmopathy was observed in 76 of 202 radioiodine-treated participants (38%) and in 40 of 215 methimazole-treated participants (19%): risk ratio (RR) 1.94 (95% confidence interval (CI) 1.40 to 2.70); 417 participants; 2 trials; low quality evidence. A total of 35% to 56% of radioiodine-treated participants and 42% of participants treated with methimazole were smokers, which is associated with the risk of worsening or development of Graves' ophthalmopathy. Euthyroidism was not achieved by any participant being treated with radioiodine compared with 64/68 (94%) of participants after methimazole treatment (112 participants; 1 trial). In this trial thyroxine therapy was not introduced early in both treatment arms to avoid hypothyroidism. Recurrence of hyperthyroidism (relapse) in favour of radioiodine treatment showed a RR of 0.20 (95% CI 0.01 to 2.66); P value = 0.22; 417 participants; 2 trials; very low quality evidence. Heterogeneity was high (I² = 91%) and the RRs were 0.61 or 0.06 with non-overlapping CIs. Adverse events other than development of worsening of Graves' ophthalmopathy for radioiodine therapy were hypothyroidism (39 of 41 participants (95%) compared with 0% of participants receiving methimazole, however thyroxine treatment to avoid hypothyroidism was not introduced early in the radioiodine group - 104 participants; 1 trial; very low quality evidence) and drug-related adverse events for methimazole treatment (23 of 215 participants (11%) reported adverse effects likely related to methimazole therapy - 215 participants; 2 trials; very low quality evidence). The outcome measures all-cause mortality and bone mineral density were not reported in the included trials. One trial (174 participants) reported socioeconomic effects: costs based on the official hospital reimbursement system in Sweden for patients without relapse and methimazole treatment were USD 1126/1164 (young/older methimazole group) and for radioiodine treatment USD 1862. Costs for patients with relapse and methimazole treatment were USD 2284/1972 (young/older methimazole group) and for radioiodine treatment USD 2760. The only antithyroid drug investigated in the two included trials was methimazole, which might limit the applicability of our findings with regard to other compounds such as propylthiouracil. Results from two RCTs suggest that radioiodine treatment is associated with an increased risk of Graves' ophthalmopathy. Our findings suggest some benefit from radioiodine treatment for recurrence of hyperthyroidism (relapse) but there is uncertainty about the magnitude of the effect size.

Twitter Demographics

The data shown below were collected from the profiles of 5 tweeters who shared this research output. Click here to find out more about how the information was compiled.

Mendeley readers

The data shown below were compiled from readership statistics for 142 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 142 100%

Demographic breakdown

Readers by professional status Count As %
Unspecified 27 19%
Student > Bachelor 27 19%
Researcher 21 15%
Student > Master 21 15%
Student > Doctoral Student 11 8%
Other 35 25%
Readers by discipline Count As %
Medicine and Dentistry 57 40%
Unspecified 34 24%
Nursing and Health Professions 13 9%
Psychology 9 6%
Social Sciences 4 3%
Other 25 18%

Attention Score in Context

This research output has an Altmetric Attention Score of 4. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 14 March 2016.
All research outputs
#3,295,860
of 12,527,219 outputs
Outputs from Cochrane database of systematic reviews
#5,909
of 8,923 outputs
Outputs of similar age
#75,140
of 267,827 outputs
Outputs of similar age from Cochrane database of systematic reviews
#114
of 171 outputs
Altmetric has tracked 12,527,219 research outputs across all sources so far. This one has received more attention than most of these and is in the 73rd percentile.
So far Altmetric has tracked 8,923 research outputs from this source. They typically receive a lot more attention than average, with a mean Attention Score of 21.2. This one is in the 42nd percentile – i.e., 42% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 267,827 tracked outputs that were published within six weeks on either side of this one in any source. This one has gotten more attention than average, scoring higher than 71% of its contemporaries.
We're also able to compare this research output to 171 others from the same source and published within six weeks on either side of this one. This one is in the 32nd percentile – i.e., 32% of its contemporaries scored the same or lower than it.