↓ Skip to main content

Mathematical analysis of the regulation of competing methyltransferases

Overview of attention for article published in BMC Systems Biology, October 2015
Altmetric Badge

Mentioned by

twitter
1 X user

Citations

dimensions_citation
21 Dimensions

Readers on

mendeley
46 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Mathematical analysis of the regulation of competing methyltransferases
Published in
BMC Systems Biology, October 2015
DOI 10.1186/s12918-015-0215-6
Pubmed ID
Authors

Michael C. Reed, Mary V. Gamble, Megan N. Hall, H. Frederik Nijhout

Abstract

Methyltransferase (MT) reactions, in which methyl groups are attached to substrates, are fundamental to many aspects of cell biology and human physiology. The universal methyl donor for these reactions is S-adenosylmethionine (SAM) and this presents the cell with an important regulatory problem. If the flux along one pathway is changed then the SAM concentration will change affecting all the other MT pathways, so it is difficult for the cell to regulate the pathways independently. We created a mathematical model, based on the known biochemistry of the folate and methionine cycles, to study the regulatory mechanisms that enable the cell to overcome this difficulty. Some of the primary mechanisms are long-range allosteric interactions by which substrates in one part of the biochemical network affect the activity of enzymes at distant locations in the network (not distant in the cell). Because of these long-range allosteric interactions, the dynamic behavior of the network is very complicated, and so mathematical modeling is a useful tool for investigating the effects of the regulatory mechanisms and understanding the complicated underlying biochemistry and cell biology. We study the allosteric binding of 5-methyltetrahydrofolate (5mTHF) to glycine-N-methyltransferase (GNMT) and explain why data in the literature implies that when one molecule binds, GNMT retains half its activity. Using the model, we quantify the effects of different regulatory mechanisms and show how cell processes would be different if the regulatory mechanisms were eliminated. In addition, we use the model to interpret and understand data from studies in the literature. Finally, we explain why a full understanding of how competing MTs are regulated is important for designing intervention strategies to improve human health. We give strong computational evidence that once bound GNMT retains half its activity. The long-range allosteric interactions enable the cell to regulate the MT reactions somewhat independently. The low K m values of many MTs also play a role because the reactions then run near saturation and changes in SAM have little effect. Finally, the inhibition of the MTs by the product S-adenosylhomocysteine also stabilizes reaction rates against changes in SAM.

X Demographics

X Demographics

The data shown below were collected from the profile of 1 X user who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 46 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
United States 1 2%
Unknown 45 98%

Demographic breakdown

Readers by professional status Count As %
Student > Ph. D. Student 11 24%
Researcher 10 22%
Student > Master 6 13%
Student > Bachelor 5 11%
Student > Doctoral Student 3 7%
Other 5 11%
Unknown 6 13%
Readers by discipline Count As %
Agricultural and Biological Sciences 7 15%
Medicine and Dentistry 7 15%
Biochemistry, Genetics and Molecular Biology 6 13%
Nursing and Health Professions 4 9%
Chemistry 4 9%
Other 11 24%
Unknown 7 15%
Attention Score in Context

Attention Score in Context

This research output has an Altmetric Attention Score of 1. This is our high-level measure of the quality and quantity of online attention that it has received. This Attention Score, as well as the ranking and number of research outputs shown below, was calculated when the research output was last mentioned on 23 September 2019.
All research outputs
#18,443,697
of 22,851,489 outputs
Outputs from BMC Systems Biology
#834
of 1,142 outputs
Outputs of similar age
#200,945
of 279,430 outputs
Outputs of similar age from BMC Systems Biology
#25
of 34 outputs
Altmetric has tracked 22,851,489 research outputs across all sources so far. This one is in the 11th percentile – i.e., 11% of other outputs scored the same or lower than it.
So far Altmetric has tracked 1,142 research outputs from this source. They receive a mean Attention Score of 3.6. This one is in the 11th percentile – i.e., 11% of its peers scored the same or lower than it.
Older research outputs will score higher simply because they've had more time to accumulate mentions. To account for age we can compare this Altmetric Attention Score to the 279,430 tracked outputs that were published within six weeks on either side of this one in any source. This one is in the 16th percentile – i.e., 16% of its contemporaries scored the same or lower than it.
We're also able to compare this research output to 34 others from the same source and published within six weeks on either side of this one. This one is in the 17th percentile – i.e., 17% of its contemporaries scored the same or lower than it.