↓ Skip to main content

Room-Temperature Chemical Synthesis of C2

Overview of attention for article published in ChemRxiv, April 2019
Altmetric Badge

Mentioned by

blogs
1 blog
twitter
25 X users

Citations

dimensions_citation
2 Dimensions

Readers on

mendeley
2 Mendeley
You are seeing a free-to-access but limited selection of the activity Altmetric has collected about this research output. Click here to find out more.
Title
Room-Temperature Chemical Synthesis of C2
Published in
ChemRxiv, April 2019
DOI 10.26434/chemrxiv.8009633
Authors

Kazunori Miyamoto, Shodai Narita, Yui Masumoto, Takahiro Hashishin, Mutsumi Kimura, Masahito Ochiai, Masanobu Uchiyama

Abstract

Diatomic carbon (C2) is historically an elusive chemical species. It has long been believed that the generation of C2 requires extremely high “physical” energy, such as an electric carbon arc or multiple photon excitation, and so it has been the general consensus that the inherent nature of C2 in the ground state is experimentally inaccessible. Here, we present the first “chemical” synthesis of C2 in a flask at room temperature or below, providing the first experimental evidence to support theoretical predictions that (1) C2 has a singlet biradical character with a quadruple bond, thus settling a long-standing controversy between experimental and theoretical chemists, and that (2) C2 serves as a molecular element in the formation of sp2-carbon allotropes such as graphite, carbon nanotubes and C60.

X Demographics

X Demographics

The data shown below were collected from the profiles of 25 X users who shared this research output. Click here to find out more about how the information was compiled.
Mendeley readers

Mendeley readers

The data shown below were compiled from readership statistics for 2 Mendeley readers of this research output. Click here to see the associated Mendeley record.

Geographical breakdown

Country Count As %
Unknown 2 100%

Demographic breakdown

Readers by professional status Count As %
Student > Doctoral Student 1 50%
Student > Master 1 50%
Readers by discipline Count As %
Chemistry 2 100%